HONEYWELL AGREEMENT

CUSTOMER NAME:
HONEYWELL PROPOSAL NUMBER:
DATE OF SUBMISSION:
VALIDITY PERIOD:

ROOSEVELT UFSD
RUFSD121422
12-14-22
01-31-23

TABLE OF CONTENTS

ARTICLEPAGE

1. GENERAL PROVISIONS 1
2. HONEYWELL'S RESPONSIBILITIES 1
3. CUSTOMER'S RESPONSIBILITIES 3
4. SUBCONTRACTS 6
5. INSTALLATION AND ACCEPTANCE 6
6. PRICE AND PAYMENT 7
7. CHANGES IN THE PROJECT 7
8. INSURANCE, INDEMNITY, WAIVER OF SUBROGATION, AND LIMITATION OFLIABILITY8
9. TERMINATION OF THE AGREEMENT. 11
10. ASSIGNMENT AND GOVERNING LAW 11
11. MISCELLANEOUS PROVISIONS 12
12. DISPUTE RESOLUTION 17

ATTACHMENT A ATTACHMENT B ATTACHMENT C ATTACHMENT D ATTACHMENT E ATTACHMENT F ATTACHMENT G ATTACHMENT H ATTACHMENT I ATTACHMENT J EXHIBITS

THE WORK (SCOPE-OF-WORK)
SOFTWARE LICENSE AGREEMENT (IF APPLICABLE)
THE INSTALLATION SCHEDULE
GUARANTEE AND SUPPORT SERVICES AGREEMENT
PAYMENT SCHEDULE
RESERVED
RESERVED
RESERVED
RESERVED
PROJECT ACCEPTANCE
D-1 THROUGH D-7

ARTICLE 1
 GENERAL PROVISIONS

1.1 This Agreement, including all attachments, exhibits, and schedules referenced herein (hereinafter the "Agreement") is made by and between Honeywell International Inc. ("Honeywell"), a Delaware Corporation, acting through its Honeywell Building Technologies business unit, with a principal place of business at 715 Peachtree Street N.E., Atlanta, GA 30308, and Roosevelt Union Free School District, 240 Denton Place, Roosevelt, New York 11575 ("Customer," and together with Honeywell, the "Parties"). The Agreement is effective as of the date of the later signature of the respective Parties (the "Effective Date").
1.2 As used in this Agreement, the term "Work" means the construction and services required by the Contract Documents (as defined below), whether completed or partially completed, and includes all other labor, materials, equipment, and services provided or to be provided by Honeywell to fulfill Honeywell's obligations, as described in Attachment A, and otherwise set forth in the Contract Documents. The "Contract Documents" consist of this Agreement, its attachments, exhibits, schedules, and addenda. The Work may constitute the whole or a part of the Project. The "Project" is the total construction of which the Work performed by HONEYWELL under this Agreement may be the whole or a part. The Work specifically excludes certain design and construction relating to the Project, which are the subject of separate agreements between Customer and parties other than Honeywell.
1.3 "Support Services" means those services and obligations to be undertaken by HONEYWELL in support of CUSTOMER as set forth in Attachment D - Guarantee and Support Services Agreement.
1.4 Engineer of Record: The District has identified ECG Engineering, P.C. as the Engineer of Record to provide architectural and engineering services in connection with the Work to be performed by Honeywell. The fees and total compensation for such Engineering Services shall be $\$ 1,111,905$ and shall be paid for by Honeywell. Honeywell shall indemnify and hold the Customer harmless from any and all claims made against the Customer by the Engineer of Record for fees for Engineering Services provided hereunder. Both Honeywell and Customer agree and acknowledge that the Engineer of Record owes its/his/her professional obligations and duties, including duties of care, to the Customer. The Engineer of Record shall remain free from any financial interest in the Agreement which conflicts with the proper completion of its/his responsibilities under this Agreement and which conflicts with its/his responsibilities and duties to the Customer.
1.5 Contract Term. Pursuant to 8 N.Y.C.R.R. §155.20(d) (7) (ii), the contract term shall not exceed 18 years, or the useful life of the equipment being installed, whichever is less. The term for this contract as shown in the Attachment D Guarantee and Support Services Agreement is 18 years.

ARTICLE 2
 HONEYWELL'S RESPONSIBILITIES

2.1 HONEYWELL Work

2.1.1 Honeywell shall be responsible for construction/project management of the Work. Honeywell shall provide submittals (including, as applicable, Shop Drawings, Product Data, and Samples, etc.) to ECG Engineering, P.C. to review and approve, reject, or take other appropriate action upon Honeywell's submittals as necessary for ECG Engineering, P.C. to ascertain their conformance with the design's requirements as indicated in the Contract Documents.
2.1.2 Honeywell shall comply with and obtain, at its expense, all licenses and permits required by Federal, State, and local laws, rules, and ordinances in connection with the Work. To the extent this Agreement requires Honeywell to perform operations and/or maintenance of specified ECMs or other equipment, it shall comply with and obtain, at its expense, all licenses and permits which may be required by Federal, State, and local laws, rules, and ordinances in connection with the operation and/or maintenance of such specified ECMs. In the event that Honeywell cannot procure any such license or permit in light of a requirements that Customer is required to do so, Customer will procure the same. Honeywell understands and agrees that this project must be performed in accordance with New York State Labor Law Section 220 et. Seq.

2.2 Responsibilities with Respect to the Work

2.2.1 Honeywell will provide construction supervision, inspection, labor, materials, tools, construction equipment and subcontracted items necessary for the execution and completion of the Work.
2.2.2 Honeywell shall keep the premises in an orderly fashion and free from unnecessary accumulation of waste materials or rubbish caused by its operations. Honeywell acknowledges that Customer is a school district with children of multiple ages and shall ensure that the premises are safe for Customer's students where applicable. If HONEYWELL damages property not needed for the Work, Honeywell shall repair the property to its pre-existing condition unless Customer directs otherwise. In the event repairs are, in Customer's reasonable discretion, impracticable or insufficient to return the property to pre-existing condition, Honeywell shall replace the damaged property. At the completion of the Work, Honeywell shall remove waste material supplied by HONEYWELL under this Agreement as well as all its tools, construction equipment, machinery, and surplus material. Waste shall be disposed of as follows:
(a) Construction Waste and/or Non-hazardous Waste: Construction waste (cardboard, metal, wood crates, plastic, wiring, etc.), and/or non-hazardous waste (non-PCB ballast's, lamps, batteries, etc.), shall be removed offsite by Honeywell or its subcontractors for disposal and/or recycling. The Customer's name and address shall be listed on the shipping documents as the owner/generator of the waste. The transportation of waste materials will meet local regulatory requirements.
(b) Hazardous Waste: If and to the extent Honeywell is responsible for removal of hazardous waste pursuant to the express provisions of the Attachment A Scope of Work, Honeywell or its subcontractors shall contract with a licensed transporter for the removal of the applicable hazardous waste (PCB's, mercury, asbestos, etc.). The Customer's name and address shall be listed on the shipping documents as the owner/generator of the waste. The transportation of waste materials will meet local regulatory requirements.
2.2.3 Honeywell shall give all notices and comply with all laws and ordinances legally enacted as of the date of execution of the Agreement governing the execution of the Work. Provided, however, that Honeywell shall not be responsible nor liable for the violation of any code, law or ordinance caused by Customer or existing in Customer's property prior to the commencement of the Work.
2.2.4 Honeywell shall comply with all applicable federal, state, and municipal laws and regulations that regulate the health and safety of its workers while providing the Work and shall take such measures as required by those laws and regulations to prevent injury and accidents to other persons on, about or adjacent to any Site (as defined in Section 3.8.4). It is understood and agreed, however, that Honeywell shall have no responsibility for elimination or abatement of health or safety hazards created or otherwise resulting from activities at any Site carried on by persons not in a contractual relationship with Honeywell, including Customer, Customer's contractors or subcontractors, Customer's tenants, or Customer's visitors. Customer agrees to cause its contractors, subcontractors, and tenants to comply fully with all applicable federal, state, and municipal laws and regulations governing health and safety and to comply with all reasonable requests and directions of Honeywell for the elimination or abatement of any such health or safety hazards at any Site outside the scope of Honeywell's scope of responsibility.
2.2.5 Honeywell assumes responsibility for all injury or destruction of Honeywell's materials, tools, machinery, equipment, appliances, shoring, scaffolding, false and form work, and personal property of Honeywell's employees from whatever cause arises.

2.3 Patent Indemnity

2.3.1

Honeywell shall indemnify and hold harmless Customer, its employees, agents, and assigns against all claims, actions, damages, liabilities, and expenses, including reasonable attorney's fees as determined by court order, arising out of or related to any claims of patent infringement and any claims of construction or materialman's lien made by any subcontractor or materialman. provided that: (a) Customer gives Honeywell reasonably prompt notice in writing of any such suit and permits Honeywell, through counsel of its choice, to answer the charge of infringement and defend such suit; and (b) Customer gives Honeywell all needed information within its possession and reasonable assistance and authority, at Honeywell's expense, to enable Honeywell to defend such suit.
2.3.2 If such a suit has occurred, or in Honeywell's opinion is likely to occur, Honeywell may, at its election and expense: (a) obtain for Customer the right to continue using such hardware; (b) replace, correct, or modify it so that it is not infringing; or (c) remove such hardware and grant Customer a credit therefor, as depreciated.
2.3.3 In the case of a final award of damages in any such suit, Honeywell will pay such award. Honeywell shall not, however, be responsible for any settlement made without its written consent.

2.4 Warranties and Completion

2.4.1 Honeywell warrants Customer good and clear title to all equipment and materials furnished to Customer pursuant to this Agreement (except licensed software, which shall be governed exclusively by the terms and conditions of any applicable Software License Agreement, attached hereto as Attachment B or otherwise provided with the software) free and clear of liens and encumbrances. Honeywell hereby warrants that all such equipment and materials shall be of good quality and shall be free from defects in materials and workmanship, including installation and setup, for a period of two (2) years from the date of execution of the Certificate of Substantial Completion set forth in Exhibit $\mathrm{J}-2$ for the equipment or portion of the Work in question as reasonably determined by the Engineer of Record, provided that no repairs, substitutions, modifications, or additions have been made, except by Honeywell or with Honeywell's written permission, which shall not be unreasonably withheld and provided that after delivery such equipment or materials have not been subjected by non-Honeywell personnel to accident, neglect, misuse, or use in violation of any instructions supplied by Honeywell. Honeywell's sole liability hereunder shall be to repair promptly or replace defective equipment or materials, at Honeywell's option and at Honeywell's expense. The limited warranty contained in this Section 2.4 . 1 shall constitute the exclusive remedy of Customer and the exclusive liability of Honeywell for any breach of any warranty related to the equipment and materials furnished by Honeywell pursuant to this Agreement.
2.4.2 In addition to the warranty set forth in Section 2.4.1 above, Honeywell shall assign to Customer any and all manufacturer's or installer's warranties for equipment or materials not manufactured by Honeywell and provided as part of the Work, to the extent that such third-party warranties are assignable and extend beyond the two (2) year limited warranty set forth in Section 2.4.1.

2.4.3 THE WARRANTIES SET FORTH HEREIN ARE EXCLUSIVE, AND HONEYWELL EXPRESSLY DISCLAIMS ALL OTHER WARRANTIES, WHETHER WRITTEN OR ORAL, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO, ANY WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE EQUIPMENT AND MATERIALS PROVIDED HEREUNDER. HONEYWELL SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING FROM, OR RELATING TO, THIS LIMITED WARRANTY OR ITS BREACH.

ARTICLE 3
 CUSTOMER'S RESPONSIBILITIES

3.1 Customer shall provide Honeywell full information regarding the requirements for the Work.
3.2 Customer shall designate a representative who shall be fully acquainted with the Work, and who has authority to render decisions that do not impact the scope of the project and/or the price of the project. Honeywell acknowledges, however, that Customer is a municipality and some authority may only come from the Board of Education after the passage of a public resolution by the majority of the Board.
3.3 Customer shall furnish to Honeywell all information regarding legal limitations, utility locations and other information reasonably pertinent to this Agreement, the Work, and the Project.
3.4 To the extent not covered by 2.1.2, Customer shall secure and pay for all necessary approvals, easements, and assessments required for the construction, use or occupancy of permanent structures or for permanent changes in existing facilities, including charges for legal and auditing services.
3.5 If Customer becomes aware of any fault or defect in the Work, it shall give prompt written notice thereof to Honeywell.
3.6 The services and information required by the above paragraphs shall be furnished with reasonable promptness at Customer's expense and Honeywell shall be entitled to rely upon the accuracy and the completeness thereof.
3.7 Pursuant to the Regulations of the Commissioner of Education of the State of New York, Section 155.20(d), this Agreement shall not be executory until approval of the Commissioner of Education is obtained in writing. The Customer's obligations hereunder are contingent upon and subject to prior review and written approval of the New

York State Department of Education ("SED") pursuant to the laws and regulations of the State of New York and is also contingent upon and subject to Customer's securing of financing. This Agreement is NOT binding on the Customer until the Customer has received written approval from SED and until the Customer has secured financing or other means of payment the Customer deems acceptable in its own exclusive discretion. In the event approval of said financing or other means of payment has not been secured by the Customer within 365 days after the latest date on which this Agreement is signed, then this Agreement may be terminated by Customer upon written notice to Honeywell with no further obligation of Customer to HONEYWELL or to any other party. The Agreement may be extended beyond 365 days if such extension is in writing signed by both parties. Upon mutual written agreement by both parties any adjustment or modification to the Agreement as a result of the extension shall be an additional condition precedent.

3.8 HAZARDOUS SUBSTANCES, MOLD, AND UNSAFE WORKING CONDITIONS

3.8.1 "Hazardous Substance" includes, but is not limited to, all of the following, whether naturally occurring or manufactured, in quantities, conditions or concentrations that have, are alleged to have, or are believed to have an adverse effect on human health, habitability of a site, or the environment: (a) any dangerous, hazardous or toxic pollutant, contaminant, chemical, material or substance defined as hazardous or toxic or as a pollutant or contaminant under local, state or federal law; (b) any petroleum product, nuclear fuel or material, carcinogen, asbestos, urea formaldehyde, foamed-in-place insulation, polychlorinated biphenyl (PCBs); or (c) any other chemical or biological material or organism, that has, is alleged to have, or is believed to have an adverse effect on human health, habitability of a site, or the environment. This includes any related conditions, or any such conditions caused by third parties.
3.8.2 "Mold" means any type or form of fungus or biological material or agent, including mold, mildew, moisture, yeast and mushrooms, and any mycotoxins, spores, scents, or by-products produced or released by any of the foregoing. This includes any related conditions, or any such conditions caused by third parties.
3.8.3 "Supplied Equipment" means the equipment covered by the Work to be performed by Honeywell under this Agreement and is limited to the new equipment included in Attachment A ("Scope of Work").
3.8.4 Customer has not observed or received notice from any source (formal or informal) of (a) Hazardous Substances or Mold, either airborne or on or within the walls, floors, ceilings, heating, ventilation and air conditioning systems, plumbing systems, structure, and other components of the sites of the Work or the Support Services (each a "Site," and collectively, the "Sites"), or within furniture, fixtures, equipment, containers or pipelines in a Site; or (b) conditions that, to Customer's knowledge, might cause or promote accumulation, concentration, growth or dispersion of Hazardous Substances or Mold on or within such locations.
3.8.5 Honeywell is not responsible for determining whether the Supplied Equipment, the Covered Equipment (as defined in Attachment D), or the temperature, humidity and ventilation settings used by Customer are appropriate for Customer and the Sites with respect to avoiding or minimizing the potential for accumulation, concentration, growth or dispersion of any Hazardous Substance or Mold provided that the Supplied Equipment complies with the building codes approved by SED and applicable law.
3.8.6 If any such materials, situations, or conditions, whether disclosed or not, are in fact discovered by Honeywell or others and provide an unsafe condition for the performance of the Work or Support Services, the discovery of the condition shall constitute a cause beyond Honeywell's reasonable control and Honeywell shall have the right to cease the Work or Support Services until the area has been made safe by Customer or Customer's representative, at Customer's expense unless otherwise provided in Section 3.8.8 below. Honeywell shall have the right to terminate this Agreement if Customer has not fully remediated the unsafe condition within sixty (60) days of discovery.
3.8.7 Customer represents that Customer has not retained Honeywell to discover, inspect, investigate, identify, prevent, or remediate Mold or conditions caused by Mold.
3.8.8 Asbestos-Containing Materials: Customer has not retained Honeywell to undertake any obligations relating to the abatement, cleanup, control, removal, or disposal of asbestos-containing materials ("ACM"). Consistent with applicable Laws, Customer has supplied Honeywell with the District AHERA reports. Honeywell has reviewed the District's AHERA reports and has not identified any ACM remediation required for the execution of this scope of work. If either Honeywell or others become aware of or reasonably suspects the presence of ACM that may be disturbed by Honeywell's Work or M\&V Services, it has the responsibility to notify the Customer and has the right to cease the Work or M\&V Services in the affected area until the area has been made safe by the Customer or Customer's representative. As between Customer and Honeywell, Customer shall be responsible at its sole expense
for addressing the potential for or the presence of ACM in conformance with all applicable Laws and addressing the impact of its disturbance before Honeywell continues with its Work or M\&V Services unless Honeywell had actual knowledge that ACM was present and acted with intentional disregard of that knowledge or Honeywell should have identified the presence of ACM upon reasonable inspection, in which case (i) Honeywell shall be responsible at is sole expense for remediating areas impacted by the disturbance of the ACM, and (ii) Customer shall resume its responsibilities for the ACM after Honeywell's remediation has been completed.
3.8.9 Other Hazardous Materials: Honeywell shall be responsible for removing or disposing of any Hazardous Materials (as defined below) that it brings to the site for use in providing Work or M\&V Services ("Honeywell Hazardous Materials") and for the remediation of any areas impacted by the release of Honeywell Hazardous Materials. For other Hazardous Materials that may be otherwise present at Customer's facilities ("Non-Honeywell Hazardous Materials"), Customer shall supply Honeywell with any information in its possession relating to the presence of such materials if their presence may affect Honeywell's performance of the Work or M\&V Services. If either Customer or Honeywell becomes aware of or suspects the presence of Non-Honeywell Hazardous Materials that may interfere with Honeywell's Work or M\&V Services, it shall promptly stop the Work or M\&V Services in the affected area and notify the other. As between Customer and Honeywell, Customer shall be responsible at its sole expense for removing and disposing of Non-Honeywell Hazardous Materials from its facilities and the remediation of any areas impacted by the release of Non-Honeywell Hazardous Materials, unless Honeywell had actual knowledge that Non-Honeywell Hazardous Materials were present and acted with intentional disregard of that knowledge, in which case (i) Honeywell shall be responsible at its sole expense for the remediation of any areas impacted by its release of such Non-Honeywell Hazardous Materials, and (ii) Customer shall remain responsible at its sole expense for the removal of Non-Honeywell Hazardous Materials that have not been released and for releases not resulting from Honeywell's performance of the Work or M\&V Services. For purposes of this Agreement, "Hazardous Materials" means any material or substance that, whether by its nature or use, is now or hereafter defined or regulated as a hazardous waste, hazardous substance, pollutant or contaminant under applicable Law relating to or addressing public or employee health and safety and protection of the environment, or which is toxic, explosive, corrosive, flammable, radioactive, carcinogenic, mutagenic or otherwise hazardous or which is or contains petroleum, gasoline, diesel, fuel, another petroleum hydrocarbon product, or polychlorinated biphenyls. "Hazardous Materials" specifically includes lead-based paint and specifically excludes ACM.

3.8.10 HONEYWELL SHALL NOT BE RESPONSIBLE FOR ANY CLAIMS OR COSTS OF WHATEVER NATURE THAT IN ANY WAY RESULTS FROM OR ARISE UNDER THE EXISTENCE OF MOLD AT CUSTOMER'S PREMISES.

3.9 In addition to the price set forth in Article 6 of this Agreement, Customer shall pay any present and future taxes, or any other governmental charges now or hereafter imposed by existing or future laws with respect to the sale, transfer, use, ownership or possession of the Work or any Support Services provided hereunder, excluding taxes on Honeywell's net income. Customer represents that it is a governmental entity and that it will cooperate with Honeywell and provide the same with appropriate documentation so that Honeywell shall not have to pay taxes, fees or assessments or other charges of any character which may be imposed by existing or future laws with respect to the sale, transfer, use, ownership or possession of the Work or any Support Services provided hereunder.
3.10 Honeywell licensed software shall be governed exclusively by the terms and conditions of the applicable Software License Agreement and the terms of the Software License Agreement shall supersede this Agreement in the event of a conflict. Customer shall execute any applicable Software License Agreement. Failure of Customer to execute such Software License Agreement shall excuse Honeywell from any delivery requirements pursuant to this Agreement and shall be considered a material breach by Customer. This provision only applies to the Tridium building management licensed software as detailed in Attachment A.
3.11 Tax-Related Cooperation. Customer agrees to execute any documents and to provide additional reasonable cooperation to Honeywell related to Honeywell tax filings under Internal Revenue Code Section 179D. Unless otherwise agreed upon in writing, ECG Engineering, P.C. will be designated the sole Section 179D (or any amendment thereof or replacement legislation) beneficiary.

3.12 Representations and Warranties. Customer hereby represents and warrants to Honeywell that:

3.12.1 Customer has all requisite power and authority necessary to authorize the execution and delivery of this Agreement and the performance of its obligations hereunder and is not prohibited from entering into this Agreement or discharging and performing all covenants and obligations on its part to be performed under and pursuant to this Agreement. The execution, delivery and performance of this Agreement by Customer and the selection of, and the award of this Agreement to, Honeywell have been duly authorized by all necessary action on the part of Customer
and do not and will not require the consent of any trustee or holder of any indebtedness or other obligation of Customer, any other party to any other agreement with Customer or any other person or entity.
3.12.2 The selection of and award of this Agreement to Honeywell, execution and delivery of this Agreement, performance of all services, actions and responsibilities contemplated herein, and fulfillment of and compliance by Customer with the provisions of this Agreement do not and will not conflict with or constitute a breach of or a default under Customer's charter, as adopted by the laws of the state in which Customer is located, or any other applicable law, rule, ordinance, code or regulation, including but not limited to government procurement, competitive bidding, public notice, open meetings, or prior appropriation requirements. This Agreement meets the requirements of and complies with the Customer's charter and all other applicable laws, rules, ordinances, codes, and regulations. Customer has properly and validly selected Honeywell and awarded this Agreement to Honeywell pursuant to and in reliance on such charter, laws, rules, ordinances, codes, and regulations.
3.12.3 This Agreement has been duly executed and delivered by Customer. This Agreement is a legal, valid, and binding obligation of Customer enforceable against Customer in accordance with its terms, except as such enforceability is limited by laws of general applicability limiting the enforcement of creditors' rights.

ARTICLE 4
 SUBCONTRACTS

4.1 HONEYWELL may subcontract some or all of the Work or Support Services. Prior to beginning Work, HONEYWELL shall provide CUSTOMER with a list of subcontractors HONEYWELL intends to use with references and a list of prior work experience for each subcontractor. Within five days of receipt of the list of subcontractors, CUSTOMER shall advise HONEYWELL in writing of any reasonable objections or concerns CUSTOMER has regarding the subcontractors selected by HONEYWELL. In the event CUSTOMER notifies HONEYWELL of objections or concerns regarding subcontractor selections, HONEYWELL will work to resolve the issue in a way acceptable to both Parties, either by contracting with an alternative subcontractor, if practical, or by otherwise addressing the CUSTOMER's concerns.
4.2 A Subcontractor is a person or entity who has a direct contract with Honeywell to perform any effort in connection with the Work. The term Subcontractor does NOT include any separate contractors employed by Customer or such separate contractors' subcontractors.
4.3 For the purposes of this Agreement, no contractual relationship shall exist between Customer and any Subcontractor. Honeywell shall be responsible for the management of its Subcontractors in their performance of their Work.

ARTICLE 5

INSTALLATION AND ACCEPTANCE

5.1 The Work to be performed under this Agreement shall be commenced and substantially completed as set forth in the Installation Schedule attached hereto as Attachment C, which describes the Parties' intentions respecting the times by which the components or aspects of the Work therein set forth shall be installed and/or ready for acceptance or beneficial use by CUSTOMER. The Installation Schedule may be adjusted to reflect the final Effective Date, or as otherwise set forth in this Agreement.
5.2 If Honeywell is delayed at any time in the progress of performing its obligations under this Agreement by any act of Customer or any contractor employed by Customer; or by labor disputes (Which are not specific to Honeywell), fire, unusual delay in transportation, pandemics, epidemics, adverse weather conditions or other events or occurrences beyond Honeywell's reasonable control (an "Excusable Delay"), then the parties shall agree upon an extension of the time only for performance of the obligations affected by such Excusable Delay only for that limited period of time that is reasonably necessary to perform.
5.3 HONEYWELL shall provide Delivery and Acceptance Certificates in a form acceptable to CUSTOMER and HONEYWELL (the "Delivery and Acceptance Certificates") for the Work provided pursuant to the Schedule identified in Attachment J. Upon receipt of each Delivery and Acceptance Certificate, the Engineer of Record shall promptly inspect the Work performed by HONEYWELL identified therein and, within ten (10) days after receipt of the Certificate, make a determination as to whether such work is substantially complete. If the Engineer determines that the work is substantially complete, the Engineer shall notify both CUSTOMER and HONEYWELL in writing of
its determination. Upon receipt of an Engineer's determination of substantial completion, the Customer shall either execute each such Delivery and Acceptance Certificate or reject the Engineer's determination with a statement of the reason(s) why it has taken such action, within thirty (30) days after such certification by the Engineer. In the event the Engineer determines the work is not substantially complete, the Engineer of Record shall provide HONEYWELL with a written statement identifying specific material performance deficiencies. HONEYWELL shall correct all such material deficiencies, give written notice to CUSTOMER when all such items have been corrected, and resubmit the Certificate to the Engineer. As a condition to the issuance of the Certificate of Substantial Completion, HONEYWELL must provide to the Customer a complete list of all manuals and training sessions provided by HONEYWELL to Customer which shall include a description of the manual or training provided, the date, time, and location where the manual or training was provided, the name of the person providing the manual or training and the name of the person receiving the manual or training. Customer shall review the list and description provided by HONEYWELL and if Customer agrees that such manuals and training were provided as set forth therein, Customer will provide an acknowledgement of receipt of manuals and training. If Customer does not agree that such manuals and training were provided by HONEYWELL, then HONEYWELL shall immediately provide such manuals and training. The Engineer of Record shall complete and provide to the parties and to SED a Certificate of Substantial Completion in the form required by SED. The Parties intend that a final Delivery and Acceptance Certificate will be executed for the Work as soon as all Work is installed, operating, and certified as complete by the Engineer of Record. Execution and delivery by CUSTOMER of such final Delivery and Acceptance Certificate with respect to the Work shall constitute "Final Acceptance" of such Work performed by HONEYWELL pursuant to the Installation Schedule.

ARTICLE 6 PRICE AND PAYMENT

6.1 Price
6.1.1 The "Price" for the Work is Twenty-Three Million Three Hundred Fifty Thousand Dollars $(\$ 23,350,000)$, subject to the adjustments set forth in Articles 5 and 7.
6.1.2 The price for Support Services is set forth in Attachment D hereto, subject to the adjustments described therein.
6.1.3 The Price is based upon laws, codes, and regulations in existence as of the Effective Date. Any changes in or to applicable laws, codes and regulations affecting the cost of the Work shall be negotiated between the parties and any adjustment in the price and/or schedule shall be reflected in a change order executed by the parties. In the event of a price adjustment, Honeywell shall ensure that the savings cover the contract costs over the term of the Agreement per SED requirements.
6.1.4 The Price may be modified for delays caused by Customer and for Changes in the Work, all pursuant to Article 7.
6.1.5 The license fees for all licensed software are included in the Price to be paid by Customer.

6.2 Payment

6.2.1 Upon execution of this Agreement, Customer shall pay or cause to be paid to Honeywell the full Price in accordance with the Payment Schedule, Attachment E. Customer shall make payments for the Support Services in accordance with Attachment D.
6.2.2 Payments for the Work past due more than thirty (30) days shall be governed by Article XI-A of the State Finance Law to the extent required by law.

ARTICLE 7 CHANGES IN THE PROJECT

7.1 A Change Order is a written order signed by Customer and Honeywell authorizing a change in the Work or adjustment in the Price, or a change to the Installation Schedule described in Attachment C.
7.2 The parties, without invalidating this Agreement, may request changes in the Work to be performed under this Agreement, consisting of additions, deletions, or other revisions to the Work or Installation Schedule ("Change Orders"). Such adjustments shall be determined by mutual agreement of the parties. Any Change Order must be signed
by an authorized representative of each party. Claims for equitable adjustment may be asserted in writing within a reasonable time from the date a party becomes aware of a change to the Work by written notification. Failure to promptly assert a request for equitable adjustment, however, shall not constitute a waiver of any rights to seek any equitable adjustment with respect to such change.
7.3 Claims for Concealed or Unknown Conditions: If conditions are encountered at any Site that are (1) subsurface or otherwise concealed physical conditions which differ materially from those indicated in the Contract Documents, or (2) unknown physical conditions of an unusual nature, which differ materially from those ordinarily found to exist and generally recognized as inherent in construction activities of the character provided for in the Contract Documents, then notice by the observing party shall be given to the other party promptly before conditions are disturbed and in no event later than twenty-one (21) days after first observance of the conditions, and, if appropriate, an equitable adjustment to the Price and Installation Schedule shall be made by a Change Order. If agreement cannot be reached by the Parties, the party seeking an adjustment in the Price or Installation Schedule may assert a claim in accordance with Paragraph 7.4. Any claims for concealed or unknown condition by Honeywell, however, shall not be valid if Honeywell should have been able to become aware of such conditions upon a visual inspection of either the premises or contract documents.
7.4 If Honeywell wishes to make a claim for an increase in the Price or an extension in the Installation Schedule it shall give Customer written notice thereof within a reasonable time after the occurrence of the event giving rise to such claim. This notice shall be given by Honeywell before proceeding to execute the Work, except in an emergency endangering life or property, in which case Honeywell shall have the authority to act, in its discretion, to prevent threatened damage, injury or loss. Claims arising from delay shall be made within a reasonable time after the delay. Increases based upon design and estimating costs with respect to possible changes requested by Customer shall be made within a reasonable time after the decision is made not to proceed with the change. No such claim shall be valid unless so made. If Customer and Honeywell cannot agree on the amount of the adjustment in the Price, or the Installation Schedule, it shall be determined pursuant to the provisions of Article 12. Any change in the Price or the Installation Schedule resulting from such claim shall be authorized by Change Order.
7.4.1 The Engineer of Record shall make the initial determination with respect to all claims for change orders, subject to dispute or litigation by either party in accordance with the provisions of Article 12. Honeywell shall present a draft Change Order document to the Customer for review within ninety (90) days from the date Honeywell becomes aware of the need for a Change Order.
7.5 Emergencies: In any emergency affecting the safety of persons or property, Honeywell shall act, at its discretion, to prevent threatened damage, injury, or loss. Any increase in the Price or extension of time claimed by Honeywell on account of emergency work shall be determined as provided in Section 7.4.

ARTICLE 8

INSURANCE, INDEMNITY, WAIVER OF SUBROGATION, AND LIMITATION OF

LIABILITY

8.1 Indemnity

8.1.1 To the fullest extent allowable by law, Honeywell shall defend, indemnify, and hold harmless Customer, its officers, employees, agents and assigns from and against all claims, actions, damages, liabilities and expenses, including reasonable attorney's fees, arising out of or related to personal injury or property damage to the extent caused by Honeywell's negligence or willful misconduct in connection with this Agreement.
8.1.1.1 Honeywell shall indemnify, defend, and hold harmless Customer, its employees, agents, and assigns against all claims, actions, damages, liabilities, and expenses, including reasonable attorneys' fees as determined by court order arising out of or related to claims of construction or materialman's liens made by any subcontractor or materialman.

8.1.2 Reserved.

8.1.3 Customer shall require any other contractor who may have a contract on this project and related to this Agreement with Customer to perform work in the areas where Work will be performed under this Agreement to agree
to indemnify Customer and Honeywell and hold them harmless from all claims for bodily injury and property damage that may arise from that contractor's operations. Such provisions shall be in a form satisfactory to Honeywell.
8.2 Contractor's Insurance: Honeywell shall, at its own expense, carry and maintain in force at all times from the effective date of the Contract through final completion of the work the following insurance. Honeywell will not issue coverage on a per project basis. It is agreed, however, that Honeywell has the right to insure or self-insure any of the insurance coverages listed below:
(a) Commercial General Liability Insurance to include contractual liability and products/completed operations liability with a combined single limit of USD $\$ 10,000,000$ per occurrence with a $\$ 15,000,000$ aggregate. Such policy will be written on an occurrence form basis and the coverage shall be primary and non-contributory in favor of the Customer; Such coverage shall also include Personal \& Advertising Injury - $\$ 1,000,000.00$ Each Occurrence Medical Expenses (any one person) - $\$ 500,000.00$
(b) If automobiles are used in the execution of the Agreement, Automobile Liability Insurance with a minimum combined single limit of USD $\$ 5,000,000$ per occurrence. Coverage will include all Honeywell owned, leased, non-owned and hired vehicles.
(c) Where applicable, "All Risk" Property Insurance, including Builder's Risk insurance, for physical damage to property which is assumed by Honeywell in the Agreement. Such amount to be approved by the Owner.
(d) Workers' Compensation Insurance Coverage for Honeywell employees: A - Statutory limits and Coverage BEmployer's Liability Insurance with limits of USD $\$ 1,000,000$ for bodily injury each accident or disease.
In accordance with Section 142 of the State Finance Law, this Contract shall be void and of no force and effect unless Honeywell shall provide and maintain coverage during the life of this contract for the benefit of such employees as are required to be covered by the provisions of the Workers' Compensation Law.
8.2.1 In addition to the coverages required and under the same terms and requirements of such coverages, Honeywell shall provide hazardous material liability insurance as follows: $\$ 2,000,000$ occurrence $/ \$ 2,000,000$ aggregate, including products and completed operations. Such insurance shall include coverage for Honeywell's operations including, but not limited to, removal, replacement enclosure, encapsulation and/or disposal of asbestos, or any other hazardous material, along with any related pollution events, including coverage for third-party liability claims for bodily injury, property damage and clean-up costs. If a retroactive date is used, it shall pre-date the inception of the Contract. If motor vehicles are used for transporting hazardous materials, Honeywell shall provide pollution liability broadened coverage as well as proof of MCS 90 . Coverage shall fulfill all requirements set forth herein and shall extend for a period of three (3) years following acceptance by the Customer of the Certificate of Final Completion.
8.2.2 Prior to commencement of the Work, Honeywell will furnish evidence of said insurance coverage in the form of a Memorandum of Insurance with the Customer listed as an additional insured which is accessible at: http://honeywell.com/sites/moi/. All insurance required in this Article will be written by companies with a rating of no less than "A-, XII" by A.M. Best or equivalent rating agency. Honeywell will endeavor to provide a thirty (30) day notice of cancellation or non-renewal to the Customer. In the event that a self-insured program is implemented, Honeywell will provide adequate proof of financial responsibility.
8.2.3 In the event that any of the insurance coverage to be provided by Honeywell to the Customer contains a deductible, Honeywell agrees to indemnify and hold Customer harmless from the payment of such deductible applicable to insurance furnished by Honeywell.
8.2.4 Honeywell shall require all subcontractors and /or Architect/Engineer to carry similar insurance coverages and limits of liability as set forth herein and adjusted to the nature of subcontractors' operations and submit same to the Customer for approval prior to start of any work. In the event Honeywell fails to obtain the required certificates of insurance from its Subcontractors and/or Architect/Engineer, and a claim is made or suffered, Honeywell shall indemnify, defend, and hold harmless the Customer, its Board, officers, agents, or employees from any and all claims for which the required insurance would have provided coverage. This indemnity obligation is in addition to any other indemnity obligation that will be provided for in the Contract.
8.2.5 Honeywell acknowledges that its failure to obtain or keep current the insurance coverage required and/or its failure to ensure that its subcontractors and/or Architect/Engineer maintain the required coverage, shall constitute a material breach of contract and subjects Honeywell to liability for damages, including but not limited to direct, indirect, consequential, special and such other damages the Customer sustains as a result of such breach. In addition, Honeywell shall be responsible for the indemnification to the Customer of any and all costs associated with the aforementioned lapse in coverage, including but not limited to reasonable attorney's fees.
8.2.6 All policies obtained by Honeywell, its subcontractors and/or Architect/Engineer shall include a waiver of subrogation in favor of the Customer.
8.2.7 Customer in good faith may adjust and settle a loss with Honeywell's insurance carrier. Honeywell waives all rights against Customer, its Board, officers, agents, and employees for damages caused by fire or other perils to the extent of actual recovery of any insurance proceeds under any insurance policy procured or other property insurance applicable to Honeywell's work.

8.3. CUSTOMER's Liability Insurance

8.3.1 Customer shall be responsible for purchasing and maintaining its own liability insurance and, at its option, may purchase and maintain such insurance as will protect it against claims that may arise from operations under this Agreement.

8.4 Insurance to Protect Project

8.4.1 Customer shall purchase and maintain all risk full cost replacement property insurance in a form acceptable to Honeywell for the length of time to complete the Project. This insurance shall include as named additional insureds Honeywell and Honeywell's Subcontractors and Sub-subcontractors and shall include, at a minimum, coverage for fire, windstorm, flood, earthquake, theft, vandalism, malicious mischief, transit, collapse, testing, offsite storage, and damage resulting from defective design, workmanship, or material. Customer will increase limits of coverage, if necessary, to reflect estimated replacement costs. Customer will be responsible for any co-insurance penalties or deductibles. If the Work covers an addition to or is adjacent to an existing building, Honeywell and its Subcontractors and Sub-subcontractors shall be named additional insureds under Customer's Property Insurance covering such building and its contents.
8.4.2 Customer shall purchase and maintain such insurance as will protect Customer and Honeywell against loss of use of Customer's property due to those perils insured pursuant to Subparagraph 8.4.1. Such policy will provide coverage for expenses of expediting materials, continuing overhead of Customer and Honeywell, necessary labor expense including overtime, loss of income by Customer and other determined exposures. Exposures of Customer and Honeywell shall be determined by mutual agreement and separate limits of coverage fixed for each item.
8.4.3 Customer shall provide evidence of Insurance to HONEYWELL before work on the Project begins. All insurance coverage(s) must be with a carrier rated A- or better by one of the National Insurance Rating Agencies such as A.M. Best. HONEYWELL will be given thirty (30) days notice of cancellation, non-renewal, or any endorsements restricting or reducing coverage.

8.5 Property Insurance Loss Adjustment

8.5.1 Any insured loss covered under insurances required pursuant to Article 8.4 shall be adjusted with Customer and Honeywell and made payable to Customer and Honeywell as trustees for the insureds, as their interests may appear, subject to any applicable mortgagee clause.
8.5.2 Upon the occurrence of an insured loss, monies received will be deposited in a separate account and the trustees shall make distribution in accordance with the agreement of the parties in interest, or in the absence of such agreement, in accordance with an arbitration award pursuant to Article 12. If the trustees are unable to agree between themselves on the settlement of the loss, such dispute shall also be submitted to arbitration pursuant to Article 12 .

8.6 Limitation of Liability

8.6.1 NEITHER HONEYWELL NOR CUSTOMER WILL BE RESPONSIBLE TO THE OTHER FOR ANY CONSEQUENTIAL, PUNITIVE, OR EXEMPLARY DAMAGES, LOSS OF PROFITS OR REVENUE, REGARDLESS OF HOW CHARACTERIZED AND REGARDLESS OF A PARTY HAVING BEEN ADVISED OF THE POSSIBILITY OF SUCH POTENTIAL LOSSES OR RELIEF, ARISING IN ANY MANNER FROM THIS AGREEMENT, THE WORK, THE IMPROVEMENT MEASURES, THE PREMISES, THE M\&V SERVICES, OR OTHERWISE. Notwithstanding anything to the contrary, the limitation of liability herein does not diminish Honeywell's responsibilities to the Customer with respect to the energy performance guarantee as defined in Attachment D. THE AGGREGATE LIABILITY OF HONEYWELL FOR ANY CLAIMS ARISING OUT OF OR RELATED TO THIS AGREEMENT WILL IN NO CASE EXCEED FIVE (5) TIMES THE PRICE SET FORTH IN ARTICLE 6 OF THIS AGREEMENT; PROVIDED, HOWEVER, THAT THIS LIMITATION ON LIABILITY

SHALL NOT APPLY TO DAMAGES CAUSED BY HONEYWELL'S GROSS NEGLIGENCE, RECKLESS ACTS OR OMISSIONS OR WILLFUL MISCONDUCT. Nothing in this Section 8.6.1 shall be construed to limit the recovery for compensatory or actual direct damages suffered by Customer resulting from Honeywell or its agent's grossly negligent, or reckless acts or omissions or willful misconduct. In addition, the forgoing limitation of liability shall not limit Customer's right to seek damages related to the loss of use of its facilities to the extent such damages are caused by Honeywell's negligence and do not exceed an aggregate of $\$ 200,000$. If this Agreement covers fire safety or security equipment, Customer understands that Honeywell is not an insurer regarding those services, and that Honeywell shall not be responsible for any damage or loss that may result from fire safety or security equipment that fails to prevent a casualty loss.

TERMINATION OF THE AGREEMENT

9.1 If Honeywell defaults in or fails or neglects to carry forward the Work in accordance with this Agreement, Customer may provide notice in writing of its intention to terminate this Agreement to Honeywell. If Honeywell, following receipt of such written notice, neglects to cure or correct the identified deficiencies within thirty (30) business days, Customer may provide a second written notice. If Honeywell has not, within thirty (30) business days after receipt of such notice, acted to remedy and make good such deficiencies, Customer may terminate this Agreement and take possession of the Site together with all materials thereon, and move to complete the Work itself expediently. If the unpaid balance of the Price exceeds the expense of finishing the Work, the excess shall be paid to Honeywell, but if the expense exceeds the unpaid balance, Honeywell shall pay the difference to Customer. Nothing in this provision shall be deemed a waiver of the parties' rights to institute an action for damages, breach of contract, tort, costs, and fees.
9.1.1 Notwithstanding the foregoing, the Customer reserves the right to terminate this Agreement for any reason, or no reason whatsoever, upon thirty (30) days written notice to Honeywell. In the event of such termination, the parties shall endeavor in an orderly manner to wind down activities hereunder. In the event of such termination, all reports and services due to Customer must be completed by Honeywell, its employees, and/or agents within thirty (30) days of the termination date. In the event of termination under this subsection, Honeywell shall have the right to recover from Customer payment for Work executed prior to the date of termination.
9.2 If Customer fails to make payments as they become due, or otherwise defaults or breaches its obligations under this Agreement, Honeywell may give written notice to Customer of Honeywell's intention to terminate this Agreement. If, within sixty (60) days following receipt of such notice, Customer fails to make the payments then due, or otherwise fails to cure or perform its obligations, Honeywell may, by written notice to Customer, terminate this Agreement and recover from Customer payment for Work executed and for actual losses sustained due to termination. Nothing in this provision shall be deemed a waiver of the parties' rights to institute an action for damages, breach of contract, tort, costs, and fees.

ARTICLE 10

ASSIGNMENT AND GOVERNING LAW

10.1 This Agreement shall be governed by the law of the State where the Work is performed. Disputes involving this contract including the breach or alleged breach thereof, may not be submitted to binding arbitration located in the County of the Customer, but must, instead, be heard in a court of competent jurisdiction of the State of New York.
10.2 Neither party to the Agreement shall assign this Agreement or sublet it as a whole without the written consent of the other party. Such consent shall not be unreasonably withheld. HONEYWELL may enter into subcontracts for the Work in accordance with Section 4.1.
10.3 This project is subject to prevailing wage rate requirements. All workers will be paid according to the prevailing wage rates set forth by the New York State Department of Labor.
10.4 In addition to the methods of service allowed by the State Civil Practice Law \& Rules, Honeywell hereby consents to service of process upon it by registered or certified mail, return receipt requested. Service hereunder shall be complete upon Honeywell's actual receipt of process or upon Customer's receipt of the return thereof by the United States Postal Service as refused or undeliverable. Honeywell must promptly notify Customer, in writing, of each and every change of address to which service of process can be made, Service by Customer to the last known address shall be sufficient. Honeywell shall have thirty (30) calendar days after service hereunder is complete in which to respond.

ARTICLE 11 MISCELLANEOUS PROVISIONS

11.1 The Table of Contents and headings in this Agreement are for information and convenience only and do not modify the obligations of this Agreement.
11.2 Confidentiality. As used herein, the term "Confidential Information" shall mean any information in readable form or in machine-readable form, including software supplied to Customer by Honeywell that has been identified or labeled as "Confidential" and/or "Proprietary" or with words of similar import. Confidential Information shall also mean any information that is disclosed orally and is designated as "Confidential" and/or "Proprietary" or with words of similar import at the time of disclosure and is reduced to writing, marked as "Confidential" and/or "Proprietary" or with words of similar import, and supplied to the receiving party within ten (10) days of disclosure. The electronic platform, code, and arrangement upon which the legible Energy Savings Calculations are published is "Proprietary." Customer shall notify Honeywell if it receives a Freedom of Information Law request relating to information labeled as "Confidential" and /or "Proprietary" by Honeywell and Honeywell shall then have thirty (30) days after it receives such notification to respond to Customer by either providing a redacted version of the requested materials in accordance with New York's Freedom of Information Law or advising that the requested materials may be disclosed. In the event Honeywell does not respond to the notification from Customer within the specified period, Honeywell shall be deemed to have agreed to the disclosure of the materials as requested.

All rights in and to Confidential Information and to any proprietary and/or novel features contained in Confidential Information disclosed are reserved by the disclosing party; and the party receiving such disclosure will not use the Confidential Information for any purpose except in the performance of this Agreement and will not disclose any of the Confidential Information to benefit itself or to damage the disclosing party. This prohibition includes any business information (strategic plans, etc.) that may become known to either party.

Each party shall, upon request of the other party or upon completion or earlier termination of this Agreement, return the other party's Confidential Information and all copies thereof.

Notwithstanding the foregoing provisions, neither party shall be liable for any disclosure or use of information disclosed or communicated by the other party if the information:
(a) is publicly available at the time of disclosure or later becomes publicly available other than through breach of this Agreement; or
(b) is known to the receiving party at the time of disclosure; or
(c) is subsequently rightfully obtained from a third party on an unrestricted basis; or
(d) is approved for release in writing by an authorized representative of the disclosing party.

The obligation of this Article shall survive any expiration, cancellation, or termination of this Agreement.
11.3 Customer retains all rights that it already holds in data and other information that Customer or persons acting on its behalf input, upload, transfer, or make accessible in relation to, or which is collected from Customer's devices or equipment pursuant to, this Agreement ("Input Data"). Honeywell and its affiliates have the right to collect, retain, transfer, disclose, duplicate, analyze, modify, and otherwise use Input Data to provide, protect, improve, or develop any products or services. Honeywell and its affiliates may also use Input Data for any other purpose provided it is in an anonymized form that does not identify Customer. Any Customer Personal Data contained within Input Data shall only be used or processed in accordance with applicable law and any data privacy terms agreed upon by the parties. To the extent required by Honeywell in order to perform its obligations under this Agreement, Customer will enable Internet connectivity between its applicable system(s) and the Honeywell Sentience ${ }^{\mathrm{TM}}$ cloud platform, or other Honeywell-utilized system(s), and hereby consents to such connectivity throughout the term of this Agreement. All information, analysis, insights, inventions, and algorithms derived from Input Data by or on behalf of Honeywell and/or its affiliates (but excluding Input Data itself) and any intellectual property rights related thereto, are owned exclusively and solely by Honeywell and are Honeywell's confidential information. This Section survives expiration or termination of this Agreement and shall apply notwithstanding any other provision of this Agreement or any other agreement.
11.4 Risk of loss for all equipment and materials provided by Honeywell hereunder shall transfer to Customer upon installation at Customer's Sites from Honeywell or its Subcontractor and title shall pass upon final acceptance or final payment by Customer to Honeywell, whichever occurs later.
11.5 Final notice or other communications required or permitted hereunder shall be sufficiently given if personally delivered to the person specified below, or if sent by registered or certified mail, return receipt requested, postage prepaid, addressed as follows:

To Honeywell:
HONEYWELL BUILDING SOLUTIONS
General Counsel
715 Peachtree Street, N.E.
Atlanta, GA 30308
To Customer:
ROOSEVELT UFSD
240 Denton Place
Roosevelt, New York 11575
Attention: Superintendent of Schools \& Assistant Superintendent for Business
Copy to:
GUERCIO \& GUERCIO, LLP
77 Conklin Street
Farmingdale, New York 11735
Attn: Anthony J. Fasano, Esq.
Service hereunder shall be complete upon Honeywell's actual receipt of process or upon the Customer's receipt of the return thereof by the United States Postal Service as refused or undeliverable. Honeywell must promptly notify the Customer, in writing, of each and every change of address to which service of process can be made, Service by the Customer to the last known address shall be sufficient. Honeywell shall have thirty (30) calendar days after service hereunder is complete in which to respond.
11.6 Waiver. Either party's failure to insist upon the performance or fulfillment of any of the other party's obligations under this Agreement shall not be deemed or construed as a waiver or relinquishment of the future performance of any such right or obligation hereunder.
11.7 Honeywell guarantees Customer will realize the Guarantee Savings as defined in Attachment D during the term of this Agreement. NOTWITHSTANDING THE FOREGOING, unless stated otherwise in Attachment D, HONEYWELL (A) MAKES NO REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, WITH RESPECT TO ANY FINANCIAL PROJECTIONS, CASH FLOW MODELS, PRO FORMA FINANCIAL STATEMENTS OR OTHER DOCUMENTS, DATA OR INFORMATION PROVIDED BY OR ON BEHALF OF HONEYWELL TO CUSTOMER OR ITS REPRESENTATIVES PRIOR TO THE EXECUTION AND DELIVERY OF THIS AGREEMENT THAT ARE NOT INCLUDED IN THIS AGREEMENT, INCLUDING ITS ATTACHMENTS AND EXHIBITS (COLLECTIVELY, THE "PRIOR PROJECTIONS"), AND (B) HEREBY DISCLAIMS ALL IMPLIED WARRANTIES WITH RESPECT TO SUCH PRIOR PROJECTIONS. CUSTOMER HEREBY ACKNOWLEDGES AND AGREES THAT (i) HONEYWELL DOES NOT GUARANTEE THAT ANY RESULTS SET FORTH IN ANY PRIOR PROJECTIONS WILL BE ACHIEVED, (ii) ACTUAL RESULTS MAY VARY MATERIALLY FROM THE PRIOR PROJECTIONS, AND (iii) CUSTOMER HAS NOT RELIED UPON ANY SUCH PRIOR PROJECTIONS IN DETERMINING TO ENTER INTO THIS AGREEMENT AND CONSUMMATE THE TRANSACTIONS CONTEMPLATED HEREBY.
11.8 In the event that any clause or provision of this Agreement or any part thereof shall be declared invalid by any court having jurisdiction, such invalidity shall not affect the validity or enforceability of the remaining portions of this Agreement.
11.9 HONEYWELL IS NOT, NOR IS HONEYWELL COMPENSATED AS, A MUNICIPAL ADVISOR OR FIDUCIARY ACTING ON CUSTOMER'S BEHALF. ANY AND ALL FINANCIAL AND OTHER INFORMATION PROVIDED ABOUT OR RELATING TO MUNICIPAL SECURITIES, FEDERAL, STATE, OR LOCAL TAX CREDITS (INCLUDING, WITHOUT LIMITATION, ENERGY CREDITS OR INVESTMENT TAX CREDITS), OR OTHER MUNICIPAL FINANCIAL PRODUCTS IS PROVIDED FOR GENERAL INFORMATIONAL AND EDUCATIONAL PURPOSES ONLY AND SHOULD NOT BE CONSTRUED AS ADVICE, IS PROVIDED "AS-IS" WITHOUT WARRANTY OF ANY KIND (EXPRESS

OR IMPLIED) AND WITHOUT ANY REPRESENTATION WITH RESPECT TO ACCURACY OR COMPLETENESS, AND MUST NOT BE RELIED UPON IN CONNECTION WITH ANY SECURITIES, INVESTMENT OR FINANCIAL DECISION OR OTHER ACTION/INACTION. CUSTOMER SHOULD OBTAIN THE ADVICE OF A FINANCIAL ADVISOR, MUNICIPAL ADVISOR OR OTHER THIRD PARTY LICENSED AND QUALIFIED TO ADVISE YOU REGARDING ANY OF THE INFORMATION PROVIDED ABOUT, OR THE POTENTIAL SUITABILITY OF, MUNICIPAL SECURITIES, FEDERAL, STATE, OR LOCAL TAX CREDITS (INCLUDING, WITHOUT LIMITATION, ENERGY CREDITS OR INVESTMENT TAX CREDITS), OR MUNICIPAL FINANCIAL PRODUCTS.
11.10 Customer's Request for Proposal, Honeywell's proposal and any other documents submitted by Honeywell to the Customer prior to negotiation of this Agreement are expressly excluded from and are not a part of this Agreement, however, CUSTOMER shall be entitled to rely on representations made by Honeywell with respect to its skill and experience. The parties agree that although the Honeywell Proposal may have contained scope items, guarantee savings and M\&V options other than those stated in this Agreement, the Scope of Work, Schedule of Savings, and M\&V plan were developed jointly by the parties through negotiation. The Customer has chosen to purchase the scope of work set forth in Attachment A. The Customer accepts the Energy Guarantee and Schedule of Savings and agrees to the M\&V plan set forth in Attachment D.

This Agreement, including all attachments and exhibits hereto, represents the entire agreement between CUSTOMER and HONEYWELL. This Agreement shall not be superseded by any provisions of the documents for construction and may be amended only by written instrument signed by both CUSTOMER and HONEYWELL. None of the provisions of this Agreement shall be modified, altered, changed, or voided by any subsequent Purchase Order issued by CUSTOMER, which relates to the subject matter of this Agreement.
11.11 This Agreement may be executed in counterparts, each of which shall be deemed an original and all of which shall constitute one and the same instrument. The Parties agree that a scanned or electronically reproduced copy or image of this Agreement bearing the signatures of the Parties hereto shall be deemed an original and may be introduced or submitted in any action or proceeding as competent evidence of the execution, terms and existence of this Agreement notwithstanding the failure or inability to produce or tender an original, executed counterpart of this Agreement and without the requirement that the unavailability of such original, executed counterpart of this Agreement first be proven.
11.12 Non-Discrimination. Honeywell agrees not to discriminate against any employee, or applicant for employment, to be employed in the performance of this Agreement, with respect to hire, tenure, terms, conditions or privileges of employment, or any matter directly or indirectly related to employment because of age, sex, race, disability, color, religion, national origin, military service, or ancestry in accordance with applicable Federal, New York State or local laws, rules, and ordinances.
11.13 Payment and Performance Bond. Honeywell shall, prior to commencement of construction, deliver to the CUSTOMER Performance and Payment Bonds in a sum equal to the Contract Price with sureties licensed in the State of New York and satisfactory to the CUSTOMER conditioned upon the faithful performance by HONEYWELL of implementation of the ECMs as it may be from time to time modified by Change Orders. Such bonds to be in such form and otherwise to contain such provisions which are reasonably satisfactory to the CUSTOMER.

In addition, a rider including the following provisions shall be attached to each Bond:

1. Surety hereby agrees that it consents to and waives notice of any addition, alteration, omission, change, or other modification of the Contract Documents. Such addition, alteration, change, extension of time, or other modification of the Contract Documents, or forbearance on the part of either the Owner or the Energy Performance Contractor to the other, shall not release the Surety of its obligations hereunder and notice to the Surety of such matters is hereby waived.
2. Surety further agrees that in event of any default by the Owner in the performance of the Owner's obligations to Honeywell under the Contract, Honeywell shall cause written notice of such default (specifying said default in detail) to be given to the Owner, and the Owner shall have thirty (30) days from time after receipt of such notice within which to cure such default, or such additional reasonable period of time as may be required if the nature of such default is such that it cannot be cured within thirty (30) days. Such Notice of Default shall be sent by certified or registered U.S. Mail, return receipt requested, first class postage prepaid, to Lender and the Owner.
11.14 Independent Contractor. Nothing in this Agreement shall be construed as reserving to the CUSTOMER any right to exercise control over or to direct in any respect the conduct or management of business or operations of HONEYWELL on the property. The entire control or direction of such business and operations shall be in and remain in HONEYWELL, subject to HONEYWELL's performance obligations under this Agreement. Neither HONEYWELL nor any person performing any duties or engaged in any work on the property on behalf of HONEYWELL shall be deemed an employee or agent of the CUSTOMER.

Nothing in this Section shall be deemed to be a waiver of the Customer's right to use its property. The CUSTOMER and HONEYWELL are independent of one another and shall have no other relationship relating to or arising out of this Agreement. Neither party shall have or hold itself out as having the right or authority to bind or create liability for the other by its intentional or negligent acts or omissions or to make any contractor or otherwise assume any obligation or responsibility in the name of or on behalf of the other party.

It is understood and agreed that Honeywell, its employees, agents, subcontractors and employees of such agents and subcontractors, shall adhere to the Customer's policies with respect to conduct on the Customer's property provided that Customer has provided Honeywell such policies and procedure in writing prior to commencement of the Work as well as any and all federal, state, and local laws, rules, ordinances, policies, and procedures applicable to construction projects on such premises.
11.15 Third Party Beneficiaries. Except as may be specifically provided for in this Agreement, the parties hereto do not intend to create any rights for, or grant any remedies to, any third party beneficiary of this Agreement.
11.16 Set-off Rights. CUSTOMER shall have all of its common law, equitable and statutory rights of set-off. These rights shall include, but not be limited to, the CUSTOMER's option to withhold for the purposes of set-off any moneys due to HONEYWELL under this contract up to any amounts due and owing to the CUSTOMER with regard to this contract. CUSTOMER shall exercise its set-off rights in accordance with normal School District practices including, in cases of set-off pursuant to an audit, the finalization of such School District audit by the State agency, its representatives, or the State Comptroller.
11.17 NON-APPROPRIATION. This Agreement shall be executory only to the extent of the monies appropriated and available for the purposes of the contract, and no liability on account therefor shall be incurred beyond the amount of such monies. It is understood that neither this contract nor any representation by any public employee or officer creates any legal or moral obligation to request, appropriate or make available monies for the purpose of the contract.
11.18 HONEYWELL and the CUSTOMER acknowledge that this Agreement is subject to 8 NYCRR 155.20 and, as such, is subject to approval by the Commissioner of Education of the State of New York. This Agreement shall not be executory until approval of the Commissioner is obtained.

11.19 INTERNATIONAL BOYCOTT PROHIBITION:

In accordance with Section 220-f of the Labor Law and Section 139-h of the State Finance Law, if this contract exceeds $\$ 5,000$, Honeywell agrees, as a material condition of the contract, that neither Honeywell nor any substantially owned or affiliated person, firm, partnership or corporation has participated, is participating, or shall participate in an international boycott in violation of the federal Export Administration Act of 1979 (50 USC App. Sections 2401 et seq.) or regulations thereunder. If Honeywell, or any of the aforesaid affiliates of Energy Performance Contractor, is convicted or is otherwise found to have violated said laws or regulations under the final determination of the United States Commerce Department or any other appropriate agency of the United States subsequent to the contractors execution, such contract, amendment, or modification thereto shall be rendered forfeit and void. Honeywell shall so notify the Customer within five (5) business days of such conviction, determination, or disposition of appeal.

If this is a public work contract covered by Article 8 of the Labor Law or a building service contract covered by Article 9 thereof, neither Honeywell's employees nor the employees of its subcontractors may be required or permitted to work more than the number of hours or days stated in said statutes, except as otherwise provided in the State Employment Regulation and as set forth in prevailing wage and supplement schedules issued by the New York State Department of Labor. Furthermore, Honeywell and its subcontractors must pay at least the prevailing wage rate and pay or provide the prevailing supplements, including the premium rates for overtime pay, as determined by the New York State Department of Labor in accordance with the Labor Law.

11.20 RECORDS:

Honeywell shall establish and maintain complete and accurate books, records, documents, accounts, and other evidence directly pertinent to performance under this contract (hereinafter, collectively "the Records"). The Records must be kept for the balance of the calendar year in which they were made and for six (6) additional years thereafter. The State Comptroller, the Attorney General, and any other person or entity authorized to conduct an examination, as well as the agency or agencies involved in this contract, shall have access to the Records during normal business hours at an office of Honeywell within the State of New York or, if no such office is available, at a mutually agreeable and reasonable venue within the State, for the term specified above for the purposes of inspection, auditing and copying. Nothing contained herein shall diminish, or in any way adversely affect, Customer's right to discovery in any pending or future litigation. Any audit and inspection rights include only the rights to verify compliance with the Contract Documents and do not include the right to review HONEYWELL's proprietary information unless otherwise required by law.

ARTICLE 12
DISPUTE RESOLUTION
12.1 HONEYWELL and CUSTOMER shall exert best efforts to resolve any dispute that may arise respecting the Work or the Project. In the event that a particular dispute cannot be so resolved, HONEYWELL and CUSTOMER agree that the dispute shall be resolved in a state or federal court of competent jurisdiction, in the County of Nassau, State of New York.

APPROVALS:
The parties hereby execute this Agreement as of the date first set forth herein by the signatures of their duly authorized representatives:

HONEYWELL INTERNATIONAL INC.

~ This Page Intentionally Left Blank ~

ATTACHMENT A SCOPE OF WORK

PART 1 - PRODUCTS \& EXECUTION

All work performed under the energy performance contract will be in accordance with the provisions of Section 01050 - "Uniform Safety Standards for School Construction and Maintenance Projects Commissioner's Regulations" specification incorporated herein by reference.

Plans and specifications, based on the scope below, will be produced for submission to the State Education Department for approval and are incorporated herein by reference.

All work must be performed and installed in accordance with applicable laws, rules, regulations, codes, and ordinances of New York State.

ECM 1: LED Lighting and Lighting Controls Upgrade
Table A-1.1 is a summary of the facilities included for lighting and lighting controls upgrades.

Building	
Roosevelt High School	Roosevelt Middle School
Centennial Ave Elementary School	Ulysses Byas Elementary School
Washington-Rose Elementary School	

TABLE A-1.1

Scope of Work:

1) Honeywell shall provide all equipment, materials, and labor, for the buildings listed in Table A-1.1, to implement the lighting retrofit project as specified in Exhibit D-5-1: Lighting Line by Line attached hereto and incorporated herein by reference.
2) Coordinate all lighting retrofit activities with Customer's Engineer or Customer's designated representative to minimize disruptions.
3) Properly dispose of and recycle replaced fixtures and lamps and provide a certificate to the Customer.
4) Ensure all work meets applicable codes and standards.
5) Repair or replacement of fixture lenses is not included (unless noted otherwise in Exhibit D-5-1).
6) Provide training to Customer operating and maintenance personnel.
7) The upgrades included in the contract are limited to those listed in Exhibit D-5-1; Honeywell shall provide a price for any additional work at the written request of the Customer.
8) The customer shall contact the manufacturer directly for warranty replacement lamps and ballasts after the initial installation period is complete, any labor associated with the replacement after the initial installation is the responsibility of the customer.
9) At completion of the work, the Customer will be supplied with 2% of the lamps and ballasts for maintenance stock.
10) The warranty for the lighting is as follows:
a) UL type B linear LED lamps ($2^{\prime}, 3^{\prime}$ and $4^{\prime} \mathrm{T} 8$) are covered by a manufacturer warranty for a period of ten (10) years.
b) UL type B linear LED T5 lamps are covered by a manufacturer warranty for a period of ten (10) years.
c) UL type C linear T8 lamps are covered by a manufacturer warranty for a period of ten (10) years.
d) Screw in PAR LED lamps are covered by a manufacturer warranty for a period of three (3) years.
e) Screw in A-Line LED and MR16 LED lamps are covered by a manufacturer warranty for a period of three (3) years.
f) Screw in Corn Cob LED lamps are covered by a manufacturer warranty for a period of five (5) years.
g) Biax LED linear lamps are covered by a manufacturer warranty for a period of (5) years.
h) LED fixture drivers/new LED fixtures are covered by a manufacturer warranty for a period of five (5) to ten (10) years.
i. New LED recessed can kits, round kits and panel kits are covered by a manufacturer warranty for a period of five (5) years.
ii. New LED highbay fixtures are covered by a manufacturer warranty for a period of five (5) years.
iii. New LED standard wrap and flat panel troffer fixtures by Maxlite are covered by a manufacturer warranty for a period of ten (10) years
iv. New LED vanity fixtures by Maxlite are covered by a manufacturer warranty for a period of five (5) years
v. New LED flood and shoe box exterior fixtures by Maxlite are covered by a manufacturer warranty for a period of ten (10) years.
vi. New LED canopy, cylinder, wall jar and wall pack fixtures by Maxlite, Brownlee, Green Creative and Cooper are covered by a manufacturer warranty for a period of five (5) years.
i) LED battery backup Micro Inverters are covered by a manufacturer warranty for a period of five (5) years.
j) LED half circle retrofit kits by LED LLC/Remphos are covered by a manufacturer warranty for a period of ten (10) years.
k) Controls components by Lutron and Vendmiser are covered by a manufacturer warranty for a period of five (5) years.
11) Wireless remote switches by Douglas Lighting Controls are covered by a manufacturer warranty for a period of two (2) years.

ECM 2: Boiler Plant Upgrades

Building	HOT WATER BOILERS							
	Boiler Make	Boiler Model	Qty	Input MBH	Fuel	Estimated Efficiency	Burner Make	Burner Model
Roosevelt HS	Riello	Array AR 4000	3	4,000	Natural Gas	90%	Integral	
	Riello	Array AR 3000	1	3,000	Natural Gas	90%	Integral	
Roosevelt MS	Riello	Array AR 4000	3	4,000	Natural Gas	90%	Integral	
Washington- Rose ES	Riello	Array AR 4000	2	4,000	Natural Gas	90%	Integral	

Table A-2.1

Scope of Work

1) Demolish and dispose of the existing hot water boilers, associated piping, boiler burners and control panel.
2) Provide hot water boilers as shown in the Table A-2.1.
3) Provide power wiring and reconnection of existing control wiring.
4) Initial water treatment required for boilers start-up.
5) Furnish and install neutralizing kits.
6) Rigging and setting in place the above described new equipment.
7) Reuse existing concrete pads or extend to fit new equipment as required per code.
8) Install new AL29-4C double wall stack for each boiler. PVC venting per manufacturer's requirements.
9) Roof flashing as required.
10) Combustion air louver, damper, and actuators to be interlocked with boiler operation.
11) Insulate new piping and existing insulation damaged during construction.
12) Fire detection or tie-in to existing fire alarm is not included.
13) Boiler room modifications such as floor drains and surface painting are excluded.
14) Start-up, test, and commission.

ECM 3: DHW Heater Upgrades

Building	DHW HEATERS					
	DHW Heater Make	DHW Heater Model	Qty	Fuel	Storage Gallons (each)	Efficiency
Roosevelt HS	AO Smith	IT-600	2	Indirect	158	90%
Washington-Rose ES	AO Smith	IT-300	2	Indirect	80	90%

Table A-3.1

Scope of Work

1) Disconnect all piping, wiring and control connection.
2) Demolish and legally dispose of existing heaters as required.
3) Furnish and install indirect domestic hot water heater tanks as listed in the Table A-3.1 above.
4) Furnish and install all necessary piping and valves.
5) Reuse existing domestic hot water pumps.
6) Furnish and install all required control and power wiring.
7) Furnish and install all necessary venting.
8) Cap existing natural gas line near existing domestic hot water heaters.
9) Furnish and install new thermostatic mixing valve.
10) Insulate new piping and existing insulation damaged during construction.
11) Start up and commissioning.

ECM 4: Mechanical Upgrades

ECM 4.1 - Chiller Compressor Replacements

The following facilities will be upgraded as part of this project:

Building
Roosevelt Middle School

TABLE A-4.1
The following table lists the number of units identified for replacement.

Compressor Quantity	Serves
2	Air Cooled Chiller \#2
1	Air Cooled Chiller \#3

TABLE A-4.2

Compressor		Electrical			Qty	Refrigerant	Type
Make	Model	Volts	Phase	Hz			
McQUAY	HSA220QY20YA	$400 / 460$	3	$50 / 60$	3	134 a	Screw Compressor

TABLE A-4.3

Scope of Work

1) Disconnect wiring and control connections to the compressors.
2) Remove and dispose of existing compressors.
3) Furnish and install new compressors per Tables A-4.2 and A-4.3 above or equal per manufacturers recommendations.
4) Furnish and install new filters, dryers, cores, sight glasses, suction strainer, valves, and oil separator.
5) Adhere to all applicable regulations regarding recovery and recycling of refrigerant.
6) Reconnect to existing supports.
7) Reconnect control and power wiring.
8) Start up and commissioning.

ECM 4.2 - RTU Compressor Replacements

The following facilities will be upgraded as part of this project:

Building
Ulysses Byas Elementary School

TABLE A-4.4

The following table lists the number of units identified for replacement.

Compressor Quantity	Serves
26	RTU-1,2,3,4,5

TABLE A-4.5

Compressor		Electrical			Refrigerant	Type
Make	Model	Volts	Phase	Hz		
Copland	ZR16M3-TWD-551	460	3	60	Scroll Compressor	
Copland	ZR12M3-TWD-551	460	3	60	R22	Scroll Compressor

TABLE A-4.6

Scope of Work

1) Disconnect wiring and control connections to the compressor.
2) Remove and dispose of existing compressor.
3) Furnish and install new compressors per Tables A-4.5 and A-4.6 above or equal per manufacturers recommendations.
4) Furnish and install new filters, dryers, cores, sight glasses, suction strainer, valves, and oil separator.
5) Adhere to all applicable regulations regarding recovery and recycling of refrigerant.
6) Reconnect to existing supports.
7) Reconnect control and power wiring.
8) Start up and commissioning.

ECM 4.3 - AC Unit Replacements

The following facilities will be upgraded as part of this project:

Building	
Roosevelt Middle School	Centennial Ave Elementary School

TABLE A-4.7

The following table lists the number of units identified for replacement.

Location	Make	Outdoor Model	Indoor Model	Zones	EER	Serves
Roosevelt Middle School	LG	ARUN024GSS4	ARNU123SJA4	2 Interior Units 1 Condensing Unit	15.8	IT Closets
Centennial Ave Elementary School	LG	ARUN038GSS4	ARNU123SJA4	3 Interior Units 1 Condensing Unit	13.7	IT Closets

Scope of Work

1) Disconnect wiring and control connections to the Split AC Units.
2) Remove and dispose of existing units.
3) Furnish and install new Split AC Units per Tables A-4.7 and A-4.8 above or equal per manufacturers recommendations.
4) Adhere to all applicable regulations regarding recovery and recycling of refrigerant.
5) Reconnect control and power wiring.
6) Start up and commissioning.

ECM 4.4 - Chilled Water Pump Replacement

The following facilities will be upgraded as part of this project:

Building
Centennial Ave Elementary School

TABLE A-4.9
The following table lists the number of units identified for replacement.

Pump Quantity	HP	Serves	GPM	Head FT
2	15	Chilled Water	450	75

TABLE A-4.10

Scope of Work

1) Disconnect piping, power and control wiring from the existing pump and motor.
2) Remove and dispose of existing pump and motor.
3) Reconfigure piping as required for the new configuration.
4) Furnish and install new pumps with NEMA Premium Efficiency motors as described in Table A-4.10 above.
5) Align couplings to EASA standards.
6) Furnish and install variable frequency drives on the motors as describe in Table A-4.10 above.
7) Furnish and install power and control wiring for the new variable frequency drives.
8) Provide all available variable frequency drive control points for integration into the Building Management System.
9) Rigging and setting in place the above described new equipment.
10) Measure and verify the pre- and post-retrofit voltage, amperage, and revolutions per minute (RPM).
11) Provide startup, testing and commissioning.

ECM 5: Install De-Stratification Fans

Building	Location	Make \& Model	Fan Count
Roosevelt HS	Gymnasium	Airius Air Pear 25	8
	Aux. Gymnasium	Airius Air Pear 25	5
Roosevelt MS	Gymnasium	Airius Air Pear 25	6
Centennial Ave ES	Gymnasium	Airius Air Pear 25	4
Ulysses Byas ES	Gymnasium	Airius Air Pear 25	4

Washington Rose ES	Gymnasium	Airius Air Pear 25	4

TABLE A-5.1

Scope of Work:

1) Furnish and install Airius de-stratification fans, or equivalent, as detailed in Table A-5.1 above to force warm air down to the floor during the heating season.
2) Provide required power wiring, speed, and isolation switches.
3) Provide startup, testing and commissioning.

ECM 6: Building Management System Upgrades

Honeywell shall provide necessary equipment, materials, and labor to implement the following Building Management System (BMS) upgrades for the facilities listed in Table A-6.1.

Building	
Roosevelt High School	Roosevelt Middle School
Centennial Ave Elementary School	Ulysses Byas Elementary School
Washington-Rose Elementary School	

TABLE A-6.1

District-Wide BMS Server

Reconfigure one of the existing Niagara 4 Supervisors to establish a District-wide BMS on a customerprovided virtual server. Provide addition Niagara licenses as needed. Graphics, alarming, and trending for all buildings will reside in the new district wide BMS supervisor. The following graphic screens shall be added:

- District Welcome Page
- Equipment summary tables by equipment type for each building
- Floor plan layouts with links to equipment screens
- Contract M\&V parameters

Roosevelt High School

- New Boiler Integration

Provide BACnet integration for three (3) new condensing boilers that will be installed as part of this project. Provide a minimum of 10 points per boiler.

Additional Scope Details:

- Furnish controls and instrumentation as necessary to accomplish the design intent described, including controllers, sensors, end-devices.
- Furnish integration labor as necessary to accomplish the design intent described, including communication wiring, programming, graphics.

- Existing Chiller Integration

Furnish and install new BACnet interface cards for two (2) existing chillers. Integrate the chillers into the BMS. Provide a minimum of 10 points per chiller.

Additional Scope Details:

- Furnish controls and instrumentation as necessary to accomplish the design intent described, including controllers, sensors, end-devices.
- Furnish integration labor as necessary to accomplish the design intent described, including communication wiring, programming, graphics.
- Daiken VFV Integration:

Provide BACnet Integration for fifty-two (52) existing Daiken VFV split units into the existing building management system and include new graphics to provide enable, status and setpoint control for terminal units throughout the school building. Provide a minimum of 5 points per split unit.

- Energy Recovery Unit Integration Upgrade:

Reconfigure the existing BACnet Integrations for nineteen (19) existing energy recovery units to expose all available monitoring points. New points shall be integrated into the existing building management system and new graphics shall be provided.

- Demand Control Ventilation: Library AHU

Furnish and install one (1) new space CO_{2} sensor in the Library and implement Demand Control Ventilation programming.

Additional Scope Details:

- Furnish controls and instrumentation as necessary to accomplish the design intent described, including controllers, sensors, end-devices.
- Furnish integration labor as necessary to accomplish the design intent described, including communication wiring, programming, graphics.
- Retro-Commission Existing JCI DDC System

Provide point-to-point checkout and functional testing for existing JCI DDC equipment as per the existing sequence of operations. The following is a list of equipment currently controlled by the JCI DDC system that will be retro-commissioned and integrated into the new Tridium Niagara N4 JACE Network Controllers:

Equipment	Quantity
Dual Temperature Plant	1
Air Handling Units (AHUs)	13
Energy Recovery Units (ERUs)	19
Unit Ventilators (UVs)	87
Finned Tube Radiation Zones (FTRs)	72
Fan Coil Units	13
Exhaust Fans (EFs)	38
Relief Damper	25

Additional Scope Details:

- Provide a deficiency list of defective mechanical components.
- Repair existing control components as needed to provide a complete functional system.
- Control Sequence Upgrades

Provide programming to implement the following sequences of operation:

- Boiler Plants
- Hot Water Reset
- Morning Hot Water Boost
- Unoccupied OAT Lockout
- Unoccupied Hot Water Offset
- Differential Pressure Reset
- Chilled Water Plants
- Chilled Water Reset
- Unoccupied OAT Lockout
- Differential Pressure Reset
- Single Zone Air Handling Units
- Optimized Start / Stop
- Morning Warmup / Cooldown
- Discharge Air Reset
- Demand-Based VFD Control
- Terminal Units
- Optimized Start / Stop
- Morning Warmup / Cooldown
- Discharge Air Reset (For Unit Ventilators Only)
- Classroom Exhaust Fans and Relief Dampers
- Plug Load Controls

Provide Wi-Fi programmable plug load controllers to turn off equipment as per the table below:

PLUG LOAD CONTROLS	
Equipment	Roosevelt High School
Medium Printer	7
Charging Cart	13
Copier	3
H/C Water Dispenser	5
Cold Drink Machine	2
Snack Machine	2

Additional Scope Details:

- Program Wi-Fi plug load controllers to turn off equipment during unoccupied periods as described in Exhibit D-1 \& D-2.
- Customer IT Department will provide a reliable Wi-Fi network on which the Wi-Fi plug load controllers will be programmed and controlled.

Roosevelt Middle School

- New Boiler Integration

Provide BACnet integration for three (3) new condensing boilers that will be installed as part of this project.

Additional Scope Details:

- Furnish controls and instrumentation as necessary to accomplish the design intent described, including controllers, sensors, end-devices.
- Furnish integration labor as necessary to accomplish the design intent described, including communication wiring, programming, graphics.

Furnish and install new BACnet interface cards for three (3) existing chillers. Integrate the chillers into the BMS. Provide a minimum of 10 points per chiller.

Additional Scope Details:

- Furnish controls and instrumentation as necessary to accomplish the design intent described, including controllers, sensors, end-devices.
- Furnish integration labor as necessary to accomplish the design intent described, including communication wiring, programming, graphics.

- Exhaust Fan Control Upgrades

Provide new DDC controls two (2) exhaust fans serving the Lobby area. These fans currently have manual controls. Provide new BMS graphics and schedules. Minimum control points shall include:

Exhaust Fan	AI	AO	DI	DO
Fan Enable				2
Fan Status			2	

Additional Scope Details:

- Furnish controls and instrumentation as necessary to accomplish the design intent described, including controllers, sensors, end-devices.
- Furnish integration labor as necessary to accomplish the design intent described, including communication wiring, programming, graphics.
- Retro-Commission Existing JCI DDC System

Provide point-to-point checkout and functional testing for existing JCI DDC equipment as per the existing sequence of operations. The following is a list of equipment currently controlled by the JCI DDC system that will be retro-commissioned and integrated into the new Tridium Niagara N4 JACE Network Controllers:

Equipment	Quantity
Dual Temperature Plant	1
Air Handling Units (AHUs)	11
VAV Boxes	164
Finned Tube Radiation Zones (FTRs)	7
Fan Coil Units	17
Exhaust Fans (EFs)	23

Additional Scope Details:

- Provide a deficiency list of defective mechanical components.
- Repair existing control components as needed to provide a complete functional system.

- Control Sequence Upgrades

Provide programming to implement the following sequences of operation:

- Boiler Plants
- Hot Water Reset
- Morning Hot Water Boost
- Unoccupied OAT Lockout
- Unoccupied Hot Water Offset
- Differential Pressure Reset
- Chilled Water Plants
- Chilled Water Reset
- Unoccupied OAT Lockout
- Differential Pressure Reset
- VAV Air Handling Units
- Optimized Start / Stop
- Morning Warmup / Cooldown
- Discharge Air Reset
- Static Pressure Reset
- Single Zone Air Handling Units
- Optimized Start / Stop
- Morning Warmup / Cooldown
- Discharge Air Reset
- Demand-Based VFD Control
- Terminal Units
- Optimized Start / Stop
- Morning Warmup / Cooldown
- Classroom Exhaust Fans and Relief Dampers

- Plug Load Controls

Provide Wi-Fi programmable plug load controllers to turn off equipment as per the table below:

PLUG LOAD CONTROLS	
Equipment	Roosevelt Middle School
Projector	2
Medium Printer	15
Charging Cart	8
Copier	1
H/C Water Dispenser	1

Additional Scope Details:

- Program Wi-Fi plug load controllers to turn off equipment during unoccupied periods as described in Exhibit D-1 \& D-2.
- Customer IT Department will provide a reliable Wi-Fi network on which the Wi-Fi plug load controllers will be programmed and controlled.

Centennial Ave Elementary School

- Existing Chiller Integration

Furnish and install new BACnet interface card for one (1) existing chiller. Integrate the chiller into the BMS. Provide a minimum of 10 points.

Additional Scope Details:

- Furnish controls and instrumentation as necessary to accomplish the design intent described, including controllers, sensors, end-devices.
- Furnish integration labor as necessary to accomplish the design intent described, including communication wiring, programming, graphics.
- Chilled Water Plant Upgrades

Furnish and install new DDC controls for a new chilled water pump and VFD that will be installed as part of this project. Provide new graphics and programming for pump failover and rotation schedule. Minimum control points shall include:

Chilled Water Pump	AI	AO	DI	DO
Pump Enable				1
Pump Status			1	
Pump Speed		1		

Additional Scope Details:

- Furnish controls and instrumentation as necessary to accomplish the design intent described, including controllers, sensors, end-devices.
- Furnish integration labor as necessary to accomplish the design intent described, including communication wiring, programming, graphics.
- Demand Control Ventilation: New Addition Gym RTU-2

Furnish and install two (2) new space CO_{2} sensors in the New Addition Gym and implement Demand Control Ventilation programming.

Additional Scope Details:

- Furnish controls and instrumentation as necessary to accomplish the design intent described, including controllers, sensors, end-devices.
- Furnish integration labor as necessary to accomplish the design intent described, including communication wiring, programming, graphics.

- Retro-Commission Existing JCI DDC System

Provide point-to-point checkout and functional testing for existing JCI DDC equipment as per the existing sequence of operations. The following is a list of equipment currently controlled by the JCI DDC system that will be retro-commissioned and integrated into the new Tridium Niagara N4 JACE Network Controllers:

Equipment	Quantity
Dual Temperature Plant	1
Rooftop Units (RTUs)	2
Air Handling Units (AHUs)	3
VAV Boxes	75
Finned Tube Radiation Zones (FTRs)	36
Fan Coil Units	3
Unit Heaters	5
Exhaust Fans (EFs)	9

Additional Scope Details:

- Provide a deficiency list of defective mechanical components.
- Repair existing control components as needed to provide a complete functional system.

- Control Sequence Upgrades

Provide programming to implement the following sequences of operation:

- Boiler Plants
- Hot Water Reset
- Morning Hot Water Boost
- Unoccupied OAT Lockout
- Unoccupied Hot Water Offset
- Differential Pressure Reset
- Chilled Water Plants
- Chilled Water Reset
- Unoccupied OAT Lockout
- Differential Pressure Reset
- VAV Air Handling Units
- Optimized Start / Stop
- Morning Warmup / Cooldown
- Discharge Air Reset
- Static Pressure Reset
- Single Zone Air Handling Units
- Optimized Start / Stop
- Morning Warmup / Cooldown
- Discharge Air Reset
- Demand-Based VFD Control
- Terminal Units
- Optimized Start / Stop
- Morning Warmup / Cooldown
- Classroom Exhaust Fans and Relief Dampers
- Plug Load Controls

Provide Wi-Fi programmable plug load controllers to turn off equipment as per the table below:

PLUG LOAD CONTROLS	
Equipment	Centennial Ave Dlementary School
Projector	2
Medium Printer	3
Charging Cart	8
Copier	1
TV Monitor	1

Additional Scope Details:

- Program Wi-Fi plug load controllers to turn off equipment during unoccupied periods as described in Exhibit D-1 \& D-2.
- Customer IT Department will provide a reliable Wi-Fi network on which the Wi-Fi plug load controllers will be programmed and controlled.

Washington Rose Elementary School

- New Boiler Integration

Provide BACnet integration for two (2) new condensing boilers that will be installed as part of this project.

Additional Scope Details:

- Furnish controls and instrumentation as necessary to accomplish the design intent described, including controllers, sensors, end-devices.
- Furnish integration labor as necessary to accomplish the design intent described, including communication wiring, programming, graphics.

- Existing Chiller Integration

Furnish and install new BACnet interface card for one (1) existing chiller. Integrate the chiller into the BMS. Provide a minimum of 10 points.

Additional Scope Details:

- Furnish controls and instrumentation as necessary to accomplish the design intent described, including controllers, sensors, end-devices.
- Furnish integration labor as necessary to accomplish the design intent described, including communication wiring, programming, graphics.
- Demand Control Ventilation: Gym AHU-6

Furnish and install two (2) new space CO_{2} sensors in the Gym and implement Demand Control Ventilation programming.

Additional Scope Details:

- Furnish controls and instrumentation as necessary to accomplish the design intent described, including controllers, sensors, end-devices.
- Furnish integration labor as necessary to accomplish the design intent described, including communication wiring, programming, graphics.
- Retro-Commission Existing JCI DDC System

Provide point-to-point checkout and functional testing for existing JCI DDC equipment as per the existing sequence of operations. The following is a list of equipment currently controlled by the JCI DDC system that will be retro-commissioned and integrated into the new Tridium Niagara N4 JACE Network Controllers:

Equipment	Quantity
Dual Temperature Plant	1
Rooftop Units (RTUs)	2
Air Handling Units (AHUs)	3
VAV Boxes	77
Finned Tube Radiation Zones (FTRs)	14
Unit Heaters	4
Exhaust Fans (EFs)	14

Additional Scope Details:

- Provide a deficiency list of defective mechanical components.
- Repair existing control components as needed to provide a complete functional system.
- Control Sequence Upgrades

Provide programming to implement the following sequences of operation:

- Boiler Plants
- Hot Water Reset
- Morning Hot Water Boost
- Unoccupied OAT Lockout
- Unoccupied Hot Water Offset
- Differential Pressure Reset
- Chilled Water Plants
- Chilled Water Reset
- Unoccupied OAT Lockout
- Differential Pressure Reset
- VAV Air Handling Units
- Optimized Start / Stop
- Morning Warmup / Cooldown
- Discharge Air Reset
- Static Pressure Reset
- Single Zone Air Handling Units
- Optimized Start / Stop
- Morning Warmup / Cooldown
- Discharge Air Reset
- Demand-Based VFD Control
- Terminal Units
- Optimized Start / Stop
- Morning Warmup / Cooldown
- Classroom Exhaust Fans and Relief Dampers

- Plug Load Controls

Provide Wi-Fi programmable plug load controllers to turn off equipment as per the table below:

PLUG LOAD CONTROLS	
Equipment	Washington-Rose Elementary School
Medium Printer	19
Charging Cart	5
Smartboard	34
Vending Machine	1

Additional Scope Details:

- Program Wi-Fi plug load controllers to turn off equipment during unoccupied periods as described in Exhibit D-1 \& D-2.
- Customer IT Department will provide a reliable Wi-Fi network on which the Wi-Fi plug load controllers will be programmed and controlled.

Ulysses BYAS Elementary School

- Existing Chiller Integration

Furnish and install new BACnet interface card for one (1) existing chiller. Integrate the chiller into the BMS. Provide a minimum of 10 points.

Additional Scope Details:

- Furnish controls and instrumentation as necessary to accomplish the design intent described, including controllers, sensors, end-devices.
- Furnish integration labor as necessary to accomplish the design intent described, including communication wiring, programming, graphics.
- Demand Control Ventilation: Gym RTU-5

Furnish and install two (2) new space CO_{2} sensors in the Gym and implement Demand Control Ventilation programming.

Additional Scope Details:

- Furnish controls and instrumentation as necessary to accomplish the design intent described, including controllers, sensors, end-devices.
- Furnish integration labor as necessary to accomplish the design intent described, including communication wiring, programming, graphics.

- Retro-Commission Existing JCI DDC System

Provide point-to-point checkout and functional testing for existing JCI DDC equipment as per the existing sequence of operations. The following is a list of equipment currently controlled by the JCI DDC system that will be retro-commissioned and integrated into the new Tridium Niagara N4 JACE Network Controllers:

Equipment	Quantity
Boiler Plant	1
Rooftop Units (RTUs)	5
VAV Boxes	80
Finned Tube Radiation Zones (FTRs)	13
Exhaust Fans (EFs)	8

Additional Scope Details:

- Provide a deficiency list of defective mechanical components.
- Repair existing control components as needed to provide a complete functional system.

- Control Sequence Upgrades

Provide programming to implement the following sequences of operation:

- Boiler Plants
- Hot Water Reset
- Morning Hot Water Boost
- Unoccupied OAT Lockout
- Unoccupied Hot Water Offset
- Differential Pressure Reset
- Chilled Water Plants
- Chilled Water Reset
- Unoccupied OAT Lockout
- Differential Pressure Reset
- VAV Air Handling Units
- Optimized Start / Stop
- Morning Warmup / Cooldown
- Discharge Air Reset
- Static Pressure Reset
- Single Zone Air Handling Units
- Optimized Start / Stop
- Morning Warmup / Cooldown
- Discharge Air Reset
- Demand-Based VFD Control
- Terminal Units
- Optimized Start / Stop
- Morning Warmup / Cooldown
- Classroom Exhaust Fans and Relief Dampers

- Plug Load Controls

Provide Wi-Fi programmable plug load controllers to turn off equipment as per the table below:

PLUG LOAD CONTROLS	
Equipment	Ulysses Byas Elementary School
Medium Printer	20
Charging Cart	6
Copier	2

Additional Scope Details:

- Program Wi-Fi plug load controllers to turn off equipment during unoccupied periods as described in Exhibit D-1 \& D-2.
- Customer IT Department will provide a reliable Wi-Fi network on which the Wi-Fi plug load controllers will be programmed and controlled.

ECM 7: Building Envelope Improvements

The following facilities will be upgraded as part of this project:

Building	
Roosevelt High School	Roosevelt Middle School
Centennial Ave Elementary School	Ulysses Byas Elementary School
Washington-Rose Elementary School	

TABLE A-7.1

Scope of Work:

1) Honeywell shall provide all equipment, materials, and labor to implement the building envelope improvements detailed below in Table A-7.2. Coordinate all retrofit activities with all building personnel to minimize disruptions.
2) No painting, patching, door, door operator, or floor repair is included, unless otherwise damaged by Honeywell during installation.

Task	Centennial Ave Elementary School	Roosevelt High School	Roosevelt Middle School	Ulysses Byas Elementary School	Washington-Rose Elementary School
Buck Frame Air Sealing (LF)		8			
Door - Install Jamb Spacer (Units)	3				3
Door Weather Striping - Doubles (Units)	12	34	10	15	13
Door Weather Stripping - Singles (Units)	5	14	8		4
Overhang Air Sealing (LF)		19	46		
Overhang Air Sealing (SF)		20			
Roll-Up Door Weather Stripping (Units)			2		
Roof-Wall Intersection Air Sealing (LF)		554			

TABLE A-7.2

ECM 8: Pipe Insulation

The following facilities will be upgraded as part of this project:

Building	
Roosevelt High School	Roosevelt Middle School
Centennial Ave Elementary School	Ulysses Byas Elementary School
Washington-Rose Elementary School	

TABLE A-8.1

Scope of Work:

1) Install pipe insulation as detailed in Table A-8.2 thru A-8.3 below.
2) Insulation is based on having a conductivity (k) not exceeding 0.27 BTU per inch $/ \mathrm{hr} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}$.
3) Insulation will be in conformance with the Energy Conservation Construction Code of New York State in effect as of the date of contract signature.

Heating Hot Water - Linear Feet of Pipe [ft] per Pipe Diameter Size [in]

Building	Air Separator Tank	$\begin{gathered} 6^{\prime \prime} \\ \text { Diameter } \end{gathered}$	5 Diameter	4" Diameter	$3^{\prime \prime}$ Diameter	$\begin{gathered} 2.5^{\prime \prime} \\ \text { Diameter } \end{gathered}$
Centennial Avenue Elementary School	17.7	-	-	96.8	20.0	-
Washington-Rose Elementary School	-	-	35.8	58.0	38.2	-
Ulysses Byas Elementary School	-	-	4.0	44.4	10.0	-
Roosevelt Middle School	-	7.7	65.6	43.8	59.2	-
Roosevelt High School	-	23.1	-	76.4	25.0	28.5
Totals	17.7	30.8	105.4	319.4	152.4	28.5

TABLE A-8.2

MINIMUM PIPE INSULATION (thickness in inches)							
FLUID OPERATING	INSULATION CONDUCTIVITY		NOMINAL PIPE DIAMETER				
TEMPERATURE RANGE	$\begin{gathered} \text { Conductivity } \\ \text { Btu-in./(h-ft } \left.\mathrm{ft}^{-} \mathrm{F}\right) \\ \hline \end{gathered}$	Mean Rating Temperature, ${ }^{\circ} \mathrm{F}$	≤ 1.0 "	$\begin{aligned} & 1.0^{\prime \prime \prime} \text { to } \\ & <1.5^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1.5^{\prime \prime} \text { to } \\ <4.0^{\prime \prime \prime} \\ \hline \end{array}$	$\begin{gathered} 4.0^{\prime \prime \prime} \text { to }< \\ 8.0^{\prime \prime} \\ \hline \end{gathered}$	≥ 8.0 "
$>350{ }^{\circ} \mathrm{F}$	0.32-0.34	250	4.5	5.0	5.0	5.0	5.0
$251{ }^{\circ} \mathrm{F}-350{ }^{\circ} \mathrm{F}$	0.29-0.32	200	3.0	4.0	4.5	4.5	4.5
$201{ }^{\circ} \mathrm{F}-250{ }^{\circ} \mathrm{F}$	0.27-0.30	150	2.5	2.5	2.5	3.0	3.0
$141^{\circ} \mathrm{F}-200^{\circ} \mathrm{F}$	0.25-0.29	125	1.5	1.5	2.0	2.0	2.0
$105^{\circ} \mathrm{F}-140^{\circ} \mathrm{F}$	0.22-0.28	100	1.0	1.0	1.5	1.5	1.5

TABLE A-8.3

The following facilities will be upgraded as part of this project:

Building	
Roosevelt High School	Roosevelt Middle School
Centennial Ave Elementary School	Ulysses Byas Elementary School
Washington-Rose Elementary School	

TABLE A-9.1

The buildings and quantities in the project scope are detailed in the following table.

Building	Walk-In Coolers	Walk-In Freezers
Roosevelt HS	2	2
Roosevelt MS	1	1
Centennial Ave ES	1	1
Ulysses Byas ES	1	1
Washington Rose ES	1	1

TABLE A-9.2

Scope of Work:

Roosevelt High School:

1) Provide four (4) zones of energy saving CoolTrol refrigeration controls or approved equal to cycle temperature and evaporator fans.
2) Replace two (2) existing shaded-pole motors with two (2) high efficiency EC motors in evaporators.
3) Install dewpoint-based pulse control for anti-sweat door heaters on one (1) freezer door and one (1) cooler door.
4) One (1) electric defrost will be electronically controlled.
5) Install four (4) current transducers and four (4) door sensors.
6) Customer is responsible for LAN drops at each school location
7) Install wiring.
8) Test and commission.

Roosevelt Middle School:

1) Provide two (2) zones of energy saving CoolTrol refrigeration controls or approved equal to cycle temperature and evaporator fans.
2) Replace four (4) existing shaded-pole motors with four (4) high efficiency EC motors in evaporators.
3) Install dewpoint-based pulse control for anti-sweat door heaters on one (1) freezer door and one (1) cooler door.
4) One (1) electric defrost will be electronically controlled.
5) Install two (2) current transducers and two (2) door sensors.
6) Customer is responsible for LAN drops at each school location
7) Install wiring.
8) Test and commission.

Centennial Ave Elementary School:

1) Provide two (2) zones of energy saving CoolTrol refrigeration controls or approved equal to cycle temperature and evaporator fans.
2) Install dewpoint-based pulse control for anti-sweat door heaters on one (1) freezer door.
3) One (1) electric defrost will be electronically controlled.
4) Install two (2) current transducers and two (2) door sensors.
5) Customer is responsible for LAN drops at each school location
6) Install wiring.
7) Test and commission.

Ulysses Byas Elementary School:

1) Provide two (2) zones of energy saving CoolTrol refrigeration controls or approved equal to cycle temperature and evaporator fans.
2) Replace four (4) existing shaded-pole motors with four (4) high efficiency EC motors in evaporators.
3) Install dewpoint-based pulse control for anti-sweat door heaters on one (1) freezer door and one (1) cooler door.
4) One (1) electric defrost will be electronically controlled.
5) Install two (2) current transducers and two (2) door sensors.
6) Customer is responsible for LAN drops at each school location
7) Install wiring.
8) Test and commission.

Washington-Rose Elementary School:

1) Provide two (2) zones of energy saving CoolTrol refrigeration controls or approved equal to cycle temperature and evaporator fans.
2) Replace four (4) existing shaded-pole motors with four (4) high efficiency EC motors in evaporators.
3) Install dewpoint-based pulse control for anti-sweat door heaters on one (1) freezer door and one (1) cooler door.
4) One (1) electric defrost will be electronically controlled.
5) Install two (2) current transducers and two (2) door sensors.
6) Customer is responsible for LAN drops at each school location
7) Install wiring.
8) Test and commission.

Exclusions:

All LAN drops required for connection to the monitoring system / controllers are the responsibility of the customer.

ECM 10: Install Solar PV Systems

Building	SOLAR PHOTOVOLTAIC SYSTEMS	
	Total DC kW Rating	System Type
Roosevelt High School	585.9	Roof Mounted
	319.4	Carport
Roosevelt Middle School	401.1	Roof Mounted
	$1,156.5$	Carport
Centennial Ave Elementary School	145.5	Roof Mounted
	297.2	Carport
Ulysses Byas Elementary School	210.5	Roof Mounted
Washington-Rose Elementary School	179.5	Roof Mounted

TABLE A-10.1

Scope of Work:

Pre-Construction:

1) Complete all required interconnection application documentation with the local utility.
2) Coordinate interconnection with the local utility - there are no electrical upgrades or redundant relays included in this project. Existing utility and school electrical service and equipment is assumed to be adequate for solar installation. Any upgrades required for interconnection will be paid for by the Customer.
3) Provide all required labor, material, and equipment required to install the solar photovoltaic systems detailed in Table A-10.1 above.

Roof Structural:

1) No roof structural work is included in this scope of work.

Construction:

1) All wiring to meet the requirements of the 2020 National Electrical Code.
2) Solar modules are to be bankable quality.
3) Inverters are to be bankable quality, balance of system to be per 2020 National Electric Code.
4) Interconnection to building system to be per 2020 National Electric Code lineside tap.
5) Removal all debris and dispose of properly.
6) All necessary storage.
7) Install Power Dash Monitoring System or equal connected to the internet for remote access.
8) Customer shall provide IP addresses for the monitoring system at each location.
9) Provide required training
10) Manufacturer provides a ten (10) year inverter warranty.

Exclusions:

1) Utility Charges or CESIR Fee for work performed by the utility.
2) Utility required protective relay.
3) Tree removal or pruning.
4) Roof modifications other than ballast sheets.

PART 2 - GENERAL

A. GENERAL CONDITIONS

1. Honeywell is not responsible for bringing existing lighting/electrical systems up to code.
2. The lighting warranty is defined under ECM 1. The warranty operates by the Customer sending the old equipment back to the manufacturer and in return new equipment will be provided to be installed by the Customer's work force.
3. If Honeywell encounters any materials or substances classified as toxic or hazardous in performance of the Work, including asbestos, Honeywell will notify Customer and will stop work in that area until such area has been made safe by the Customer, or Customer's Representative, at Customer's expense. In the event such conditions cause a delay in Honeywell's performance, Honeywell shall be entitled to recovery of all costs associated with such delay, as well as an extension of time of performance.
4. Where demolition of certain areas of a building are required for removal and installation of equipment and that demolition is included in the scope of work defined herein, Honeywell will make every effort to replace such areas with similar materials as available. If such materials are not available, materials of similar quality will be supplied and installed.
5. Electrical: Honeywell will only be responsible for repairing existing electrical wiring problems that occur within three feet (36 inches) of the device being installed or the nearest wall or ceiling penetration, whichever is smaller.
6. Piping: Honeywell will only be responsible for repairing existing piping problems that occur within two feet (24 inches) of the device being installed or the nearest wall or ceiling penetration, whichever is smaller. Piping includes, but is not limited to, domestic hot and cold water, cooling cold water, heating hot water, condensate, fuel oil, and cooling tower condensing water.
7. Routine Maintenance: Routine maintenance such as vacuuming, coil cleaning and filter change of air handling devices, etc. is the responsibility of the Customer, or as included in Attachment D.
8. Utility Meter: If new utility meters are required, provision and coordination of utility meters is the responsibility of the customer.
9. Remote Access: CUSTOMER is responsible for implementation and costs for remote Honeywell access through CUSTOMER's firewall(s) to the controllers and front-end computer(s) by one (1) remote user designated by Honeywell using one or more of the following processes:

- TCP/IP Remote Access: A dedicated static IP address, installation and on-going maintenance and subscription and licensing fees for access hardware and software and one (1) station license dedicated to the remote user, or
- Phone Lines: To be provided by customer for off-site monitoring, up to two (2) lines for each front end, as needed, one (1) line for each separate remote bus, as well as on-going maintenance of the lines.
If remote access is interrupted, at any time during the Guarantee Term, Honeywell reserves the right to suspend any reporting requirements until remote access has been restored.

10. Efficiency Values: Honeywell will install equipment and lighting components (hereto referred as "equipment") under the scope described herein with specific energy and water efficiency values. The customer is required to replace any failed "equipment" no longer warranted by Honeywell or a Honeywell subcontractor, with "equipment" of equal or greater efficiency for the full contract guarantee term.
11. Limitation of Liability - Security Systems, Fire Alarm Systems and/or Components - Honeywell's total liability for damages of any kind or nature arising out of or relating to any aspect or component of the security or fire alarm systems and/or components provided under this Agreement is limited to $\$ 100,000$.
12. Honeywell will provide information necessary to apply for utility incentives. Actual dollar amount of incentive will be determined by the Utility and is not guaranteed by Honeywell.
13. The following areas are specifically excluded from this scope of work. Correction of problems in these areas, if required by Federal, State, or local law or ordinance, will be considered additional work and will be chargeable (with approval) to the Customer.
a. Any work not specifically stated and outlined in this scope of work.
b. Painting and patching of areas beyond those areas directly related to work.
c. Existing non-code conditions (examples: existing electrical wiring which requires correction or approval by appropriate inspectors, existing penetrations in need of fire stopping, etc.).
14. Extended Warranties or Service Plans: Honeywell will transfer to the Customer manufacturer warranties and service plans to the extent they extend beyond the two year Honeywell warranty. Following the two year Honeywell warranty the Customer will contact the manufacturer directly for warranty or service issues. Honeywell does not guarantee that the manufacturer or service provider will be available throughout the term of the manufacturer's warranty.

B. RELATED WORK SPECIFIED ELSEWHERE

1. Provision of equipment, material, and labor to provide functional measurement and verification systems coordinated under Attachment D - Guarantee and Support Services Agreement.

ATTACHMENT B

RESERVED

ATTACHMENT C

INSTALLATION SCHEDULE

The Installation Schedule showing the achievement of all major project milestones, tasks and associated responsibilities included in the Scope of Work will be created using Microsoft Project and inserted behind this cover page.

Attachment C Project Schedule - Roosevelt UFSD

Einvelope Improvements

Roosevelt Middle School
Centennial Ave Elementary School
Washington-Rose Elementary School
Ulysses Byas Elementary School
38 ECM 8 Pipe Insulation
Roosevelt thigh School
Roosevelt Middle School
Centennial Ave Elementary School
Washington-Rose Elementary School
Ulysses Byas Elementary School ECM 9 Walk In Freezer/Cooler Controllers
Roosevelt thigh School
Roosevelt Middle School
Centennial Ave Elementary School
Washington-Rose Elementary School
Ulysses Byas Elementary School

CM 10 Install Solar PV Systems

Roosevelt High School
Roosevelt Middle School
Centennial Ave Elementary School
Ulysses Byas Elementary School
Washington-Rose Elementary School
Walk Through/Punchlist
57 Project Acceptance

Uration	Start	Finish
Hodays	Mon 10/30/2Fri 12/22/23	

2 days Thu 7/4/24 Fri 7/5/24
2 days Mon 7/8/24 Tue 7/9/24

2 days Wed $7 / 10 / 24$ Thu $7 / 11 / 2$
2 days Fri 7/12/24 Mon 7/15/24 226 days \quad Fri $9 / 15 / 23$ Fri 7/26/24 120 days Fri $9 / 15 / 23$ Thu $2 / 29 / 24$ 180 days Mon 11/20/2 Fri 7/26/24 85 days Mon $2 / 5 / 24$ Fri $5 / 31 / 24$ 45 days Mon 3/18/24fri 5/17/24 45 days Mon 4/8/24 Fri 6/7/24 20 days Mon 10/28/2Fri 11/22/24 Odays Wed 12/4/24 Wed 12/4/24
(1n)
$-$
-
in
T

-

V
\because
-

Project Name: Roosevelt UFSD - Energy Performance Contract

Proposal Number: RUFSD121422
Date: 12-14-22
("Honeywell")
Honeywell International Inc.
715 Peachtree Street N.E.
Atlanta, GA 30308
("Customer")
Roosevelt UFSD
240 Denton Place
Roosevelt, NY 11575

Service Location Name(s):

Roosevelt High School	1 Wagner Ave, Roosevelt, NY 11575
Roosevelt Middle School	355 East Clinton Ave, Roosevelt, NY 11575
Centennial Ave Elementary School	140 West Centennial Ave, Roosevelt, NY 11575
Ulysses Byas Elementary School	60 Underhill Ave, Roosevelt, NY 11575
Washington-Rose Elementary School	2 Rose Ave, Roosevelt, NY 11575

Summary - The following summary is for informational purposes only. The specific terms, conditions and other specifications set forth in the details of this Guarantee and Support Services Agreement shall take precedence over this summary.
\square Preferred Temperature Control Services
\square Flex Temperature Control Services
\square Preferred Automation Maintenance Services
\square Flex Automation Services
\square Preferred Fire Alarm Maintenance Services
\square Fire Alarm Test and Inspect Services
\square Preferred Security System Inspect Services
\square Flex Security System Services
\square Preferred Mechanical Maintenance Services
\square Flex Mechanical Maintenance Services
\boxtimes Honeywell Forge Predictive Maintenance
\square EBI Services
\boxtimes M\&V Services
\square Online Services
\square Advanced Support
\square Site Services
\square Honeywell Energy Analysis Reporting
\square Air Filter ServicesWater Treatment ServicesCritical Parts StockingThermography ServicesEmergency Generator ServicesIn Suite ServicesRemote Monitoring/RadionicsIndoor Air Quality Auditing ServicesService Management SoftwareFM Worksite
Guarantee Special ProvisionsOther/Special ProvisionsHoneywell Users GroupAttune ${ }^{\text {TM }}$ Advisory Services - OperationsAttune ${ }^{\text {TM }}$ Advisory Services - Energy OptimizationAttune ${ }^{\text {TM }}$ Advisory Services - Energy AwarenessAttune ${ }^{\text {TM }}$ Advisory Services - Lobby Digital Signage

Support Services Agreement Term ("Support Services Term"): Eighteen (18) years from the Support Services Effective Date.

Support Services Agreement Effective Date ("Support Services Effective Date"): First (1st) day of the month following the date of Final Project Acceptance of the Work.

Price for Year 1: Twenty-Eight Thousand Seven Hundred Seven Dollars, (\$28,707), (plus applicable taxes). See Section A.6.2 for price in subsequent years.

Payment Terms: Quarterly in Advance and payment shall be due within thirty (30) days of invoice date.Sales/Use Tax will be Invoiced SeparatelySales/Use Tax is Included in the Price \boxtimes This Sale is Tax Exempt

Honeywell International Inc., through its Honeywell Building Solutions strategic business unit ("Honeywell"), will provide, or cause to be provided, to Customer the services (the "Support Services") set forth in the attached work scope documents in Part B of this Attachment D ("Support Services Scope") with respect to the Service Location(s) in accordance with the Support Services Scope, and the terms and conditions set forth in Part A of this Attachment D, which together with the guarantee terms and Schedule of Guaranteed Savings set forth in Part C and Part D, respectively, of this Attachment D, constitute this Guarantee and Support Services Agreement (the "Support Services Agreement"). This Support Services Agreement is entered into as Attachment D to, and by execution of, the accompanying Honeywell Agreement between Honeywell and Customer (the "Main Agreement"). Together, the Main Agreement and Support Services Agreements are the "Agreement."

Part A - Support Services Terms \& Conditions	
Part B - Support Services Scope Description, including M\&V Services	
Part C - Guarantee Terms	
Part D - Schedule of Guaranteed Savings	
Exhibits - The following Exhibits are attached hereto and are made a part of the Agreements:	
Exhibit D-1 \& D-2	Baseline Operating Parameters \& Guarantee Period Operating Parameters
Exhibit D-3	Contractual Baseline Conditions, Utility Use, Utility Unit Costs
Exhibit D-4	Baseline Regression for Option C Meters
Exhibit D-5	Engineered Cost Avoidance Calculations
Exhibit D-6	Operational Savings Methodology
Exhibit D-7	Detailed M\&V Plan

PART A. STANDARD TERMS AND CONDITIONS FOR SUPPORT SERVICES

The following terms and conditions, in Sections A. 1 to A.8, apply to all Support Services, including M\&V Services.

A. 1 Terms Incorporated from Main Agreement

Except as otherwise stipulated in Section A. 13 (Honeywell SaaS Terms), the following provisions set forth in the Main Agreement shall apply to the Support Services, save that some may not apply to the SaaS Offering. Where any of the below provisions conflicts with any of the provisions of Section A.13, the provisions of Section A. 13 shall prevail to the extent of such inconsistency.
A.1.1 The Patent Indemnity provision in Section 2.3.
A.1.2 The Hazardous Substances provision in Section 3.8.
A.1.3 The Taxes provision in Section 3.9.
A.1.4 The Software License provision in Section 3.10.
A.1.5 The Force Majeure provision in Section 5.2.
A.1.6 The Price Adjustment provision in Section 6.1.3.
A.1.7 The Insurance provision in Section 8.2 shall apply through the final completion of the Support Services.
A.1.8 The Indemnity provisions in Article 8.
A.1.9 The Assignment, Governing Law and Miscellaneous provisions in Article 10 and Article 11.
A.1.10 Disputes related to the Support Services shall be resolved in accordance with Article 12 of the Main Agreement.

A. 2 Working Hours

A.2.1 Unless otherwise stated and save that this does not apply to the SaaS Offering, all Support Services will be performed during the hours of 8:00am $-4: 30 \mathrm{pm}$ local time Monday through Friday, excluding federal or state holidays. If for any reason Customer requests Honeywell to perform Support Services outside such hours, any overtime or additional expenses incurred by Honeywell will be billed to and paid by Customer.

A. 3 Proprietary Information

A.3.1 All proprietary information (as defined herein) obtained by Customer from Honeywell in connection with this Support Services Agreement will remain the property of Honeywell, and Customer will not divulge such information to any third party or use such information (except as necessary to comply with its obligations under this Agreement) without prior written consent of Honeywell. The term "proprietary information" means confidential or non-public information, including but not limited to, software supplied to Customer, disclosed or made available to Customer by Honeywell. The electronic platform, code and arrangement upon which the legible Energy Savings Calculations are published is "Proprietary." The provisions set forth in Section 11.2 of the Main Agreement shall apply to the "proprietary information."
A.3.2 Customer agrees that Honeywell may use non-proprietary information pertaining to the Agreements, and the work or services performed under the Agreements, for press releases, case studies, data analysis, promotional purposes, and other similar documents or statements to be publicly released, as long as Honeywell submits any such document or statement to Customer for its approval, which approval will not be unreasonably withheld. Honeywell may, during and after the term of the Agreements, compile and use, and disseminate in anonymous and aggregated form, all data and information related to building optimization and energy usage obtained in connection with the Agreements. The rights and obligations in this Section A. 3 shall survive termination or expiration of the Agreements.

A. 4 Limitation of Liability

A.4.1 SAVE FOR THE SAAS OFFERING, TO WHICH SECTION A.13.1.17 SHALL SOLELY APPLY, THE LIMITATIONS OF LIABILITY AND APPLICATION THEREOF, AS SET FORTH IN ARTICLE 2 AND ARTICLE 8 OF THE MAIN AGREEMENT, SHALL APPLY TO THE PROVISION OF THE SUPPORT SERVICES. NOTWITHSTANDING ANY OTHER PROVISION OF THIS AGREEMENT, TO THE EXCLUSION OF THE SAAS OFFERING TO WHICH SECTION A.13.1.17 IS SOLELY APPLICABLE, THE AGGREGATE LIABILITY OF HONEYWELL FOR ANY CLAIMS ARISING OUT OF OR RELATED TO THIS SUPPORT SERVICES AGREEMENT WILL IN NO CASE EXCEED THE ANNUAL SUPPORT SERVICES AGREEMENT PRICE; PROVIDED, HOWEVER, THAT THIS LIMITATION SHALL NOT APPLY TO THE SPECIFIC SAVINGS GUARANTEE OBLIGATIONS OF HONEYWELL SET FORTH IN THIS ATTACHMENT D.

A. 5 Coverage of Support Services

A.5. 1 Customer agrees to provide Honeywell access to all equipment and software necessary to Honeywell's performance of the Support Services. Honeywell will be free to start and stop all equipment incidental to the operation of the mechanical, control, automation, and life safety system(s) as arranged with Customer's representative.
A.5.2 Honeywell has no obligation to repair or replace non-maintainable parts of any systems, including, but not limited to, ductwork, piping, shell and tube (for boilers, evaporators, condensers, and chillers), unit cabinets, boiler refractory material, heat exchangers, insulating material, electrical wiring, hydronic and pneumatic piping, structural supports and other non-moving parts. Costs to repair or replace such non-maintainable parts will be the sole responsibility of Customer.
A.5.3 Honeywell will not reload software, or make repairs or replacements necessitated by reason of negligence or misuse of any equipment by persons other than Honeywell or its employees, or necessitated by lightning, electrical storm, or other violent weather or by any other cause beyond Honeywell's control. Honeywell will provide such services at Customer's request and at an additional charge.
A.5.4 Honeywell is not responsible for maintaining a supply of, furnishing and/or replacing lost or needed chlorofluorocarbon (CFC) based refrigerants not expressly required to be provided by Honeywell under this Agreement. Customer is solely responsible for the cost of material and labor relating to any such refrigerant.
A.5.5 Honeywell is not obligated to provide replacement software, equipment, components and/or parts that represent a significant betterment or capital improvement to Customer's system(s) hereunder.
A.5.6 Unless otherwise expressly provided in this Support Services Agreement, Customer retains all responsibility for maintaining LANs, WANs, leased lines and/or other communication mediums incidental or essential to the operation of the system(s) or Covered Equipment.

A. 6 Terms of Payment

A.6.1 Customer will pay or cause to be paid to Honeywell the full price for the Support Services, as specified on the first-year line of the Support Services Pricing Table (Section A.6.2) and such price may be adjusted, subject to Section A.13.1.19 in relation only to the SaaS Offering, in accordance with this Support Services Pricing Table. Honeywell will submit invoices to Customer in advance for Support Services to be performed during the subsequent billing period, and payment shall be due after Customer's receipt of each such invoice, as set forth in the "Payment Terms" provisions at the beginning of this Attachment D. Payments for Support Services past due more than five (5) days shall accrue interest from the due date to the date of payment at the rate of one and one-half percent (1.5\%) per month, compounded monthly, or the highest legal rate, whichever is lower. Customer will pay all attorney and/or collection fees incurred by Honeywell in collecting any past due amounts.
A.6.2 Honeywell may annually adjust the amounts charged for the Support Services provided under the Support Services Agreement as set forth in the schedule below. In addition, Honeywell reserves the right, in its discretion, to increase the price payable by Customer in the event that tariffs (or similar governmental charges) imposed by the United States or other countries result in any increase in the costs that Honeywell used to determine such price. This provision shall be read and construed with the "Economic Surcharges" provision in Section A.13.1.19 in relation only to the SaaS Offering and where there is any conflict, Section A.13.1.19 shall prevail with regard to the SaaS Offering.

YEAR	PRICE
1	$\$ 28,707$
2	$\$ 29,569$
3	$\$ 30,456$
4	$\$ 31,370$
5	$\$ 32,311$
6	$\$ 33,280$
7	$\$ 34,279$
8	$\$ 35,307$
9	$\$ 36,366$
10	$\$ 37,457$
11	$\$ 38,581$

YEAR	PRICE
12	$\$ 39,738$
13	$\$ 40,930$
14	$\$ 42,158$
15	$\$ 43,423$
16	$\$ 44,726$
17	$\$ 46,068$
18	$\$ 47,450$

A. 7 Termination

A.7.1 Customer may terminate this Support Services Agreement for cause if Honeywell defaults in the performance of any material term of this Support Services Agreement, or fails or neglects to carry forward the Support Services in accordance with this Support Services Agreement, after giving Honeywell written notice of its intent to terminate. If, within thirty (30) days following receipt of such notice, Honeywell fails to cure such default, Customer may, by written notice to Honeywell, terminate this Support Services Agreement.
A.7.2 In addition to the any other termination rights set out in this Agreement, including in A.13.1.7 (Term, Termination) below, Honeywell may terminate this Agreement for cause (including, but not limited to, Customer's failure to make payments as agreed herein) if Customer breaches this Agreement. If, within thirty (30) days following Honeywell's notice of breach, Customer fails to make the payments then due, or otherwise fails to cure such breach, Honeywell may, by written notice to Customer, terminate this Agreement and recover from Customer payment for Work performed and for losses sustained, including but not limited to, reasonable overhead, profit and applicable damages.
A.7.3 Honeywell may terminate this Support Services Agreement in the event Honeywell equipment on Customer's premises is destroyed or substantially damaged. Likewise, Customer may terminate this Support Services Agreement in the event Customer's premises are destroyed. In the event of such termination under this Section A.7.3, neither party shall be liable for damages or subject to any penalty, except that Customer will remain liable for Support Services performed to the date of termination.

A. 8 Appropriations and Essential Use

A.8. 1 Customer reasonably believes that sufficient funds can be obtained to make all payments for the initial term, as described in the summary at the beginning of this Support Services Agreement. Customer hereby covenants that it shall do all things lawfully within its power to obtain funds from which such payments may be made, including making provisions for such payments, to the extent necessary, in each budget submitted for the purpose of obtaining funding, using its bona fide best efforts to have such portion of the budget approved and exhausting all available administrative reviews and appeals in the event such portion of the budget is not approved. It is Customer's intent to make the payments for the initial term if funds are legally available therefore and in that regard Customer represents that (a) the use of the Covered Equipment and Support Services is essential to its proper, efficient and economic functioning or to the services that is provided to its citizens; (b) Customer has an immediate need for and expects to make immediate use of substantially all the Covered Equipment and Support Services, which need is not temporary or expected to diminish in the foreseeable future; and (c) the Covered Equipment and Support Services shall be used by Customer only for the purpose of performing one or more of its governmental or proprietary functions consistent with the permissible scope of its authority.
A.8.2 In the event no funds or insufficient funds are appropriated and budgeted for the acquisition, retention or operation of the Covered Equipment and Support Services under the Support Services Agreement, then Customer shall, not less than sixty (60) days prior to the end of such applicable fiscal period, in writing, notify Honeywell (and its assignee, if any) of such occurrence. The Support Services Agreement shall thereafter terminate and be rendered null and void on the last day of the fiscal period for which appropriations were made without penalty, liability or expense to Customer of any kind, except as to (i) the portions of the payments herein agreed upon for which funds have been appropriated and budgeted or are otherwise available, and (ii) Customer's other obligations and liabilities under the Agreement relating to, accruing or arising prior to such termination. In the event of such termination, Customer agrees to peaceably surrender to Honeywell (or its assignee, if any) possession of any equipment that is provided by Honeywell under the Support Services Agreement, on the date of such termination, packed for shipment in accordance with manufacturer's specifications and eligible for manufacturer's maintenance, and freight prepaid and insured to any location in the continental United States designated by Honeywell, all at Customer's expense. Honeywell (or its assignee, if any) may exercise all available legal and equitable rights and remedies in retaking possession of any equipment provided by Honeywell under this Support Services Agreement.
A.8.3 Notwithstanding the foregoing, Customer agrees (a) that if the Support Services Agreement is terminated in accordance with the preceding paragraph, Customer shall not purchase, lease or rent equipment which performs the same functions as, or functions taking the place of, those performed by the Covered Equipment nor shall it contract for any services similar to or that take the place of the Support Services provided under the Support Services Agreement, and shall not permit such functions to be performed by its own employees or by any agency or entity affiliated with or hired by Customer for the balance of the fiscal period in which such termination occurs or the next succeeding fiscal period thereafter, and (b) that it shall not, during the initial term, give priority in the application of funds to any other functionally similar equipment or services.

The following terms and conditions, in Sections A. 9 to A.12, apply to all Support Services, except for the M\&V Services.

A. 9 Warranty

Any equipment provided as part of the Support Services shall be covered by the warranties set forth in Section 2.4 of the Main Agreement. The warranty term for such equipment shall commence upon installation.

A. 10 Refrigerant

A.10.1 Customer is responsible for the containment of any and all refrigerant stored on or about the premises. Customer accepts all responsibility for and agrees to indemnify and hold harmless Honeywell from and against any and all claims, damages, or causes of action that arise out of the storage, consumption, loss and/or disposal of refrigerant, except to the extent Honeywell has brought refrigerant onsite and is directly and solely negligent for its mishandling.

A. 11 Coverage of Support Services (other than M\&V Services)

A.11.1 It is understood that the repair, replacement, and emergency service provisions of this Support Services Agreement, if any, apply only to the Covered Equipment. "Covered Equipment" means the equipment covered by the Support Services other than M\&V Services, if any, to be performed by Honeywell under this Support Services Agreement, and is limited to the equipment expressly identified as such in the Scope of Support Services.
A.11.2 Customer agrees to use Covered Equipment and software covered by the Support Services in accordance with the manufacturer's specifications.
A.11.3 Honeywell may install diagnostic devices and/or software at Honeywell's expense to enhance system operation and support. Upon termination or expiration of this Support Services Agreement, Honeywell may remove these devices and return the applicable system(s) to their original operation. Customer agrees to provide, at its sole expense, connection to the switched telephone network for the diagnostic devices and/or software.
A.11.4 This Support Services Agreement assumes that the applicable systems and/or Covered Equipment and applicable software are in maintainable condition. If repairs are necessary upon initial inspection or initial seasonal start-up, repair charges will be submitted for approval. Should these charges be declined, those non-maintainable items will be eliminated from coverage under this Support Services Agreement and the Support Services Price adjusted accordingly.
A.11.5 In the event that any applicable system or any equipment component thereof is altered, modified, changed or moved, this Support Services Agreement may be immediately adjusted or terminated, at Honeywell's sole option. Honeywell is not responsible for any damages resulting from such alterations, modifications, changes or movement.
A.11.6 Maintenance, repairs, and replacement of equipment parts and components are limited to restoring to proper working condition.
A.11.7 Customer will promptly notify Honeywell of any malfunction in the system(s) or Covered Equipment that comes to Customer's attention.

A. 12 Automatic Renewal

A.12.1 After the initial Support Services Term, and only with respect to Support Services other than M\&V Services, this Support Services Agreement will automatically renew for consecutive terms of one (1) year each ("AutoRenewal") unless terminated by either party by the delivery of written notice to the other at least sixty (60) days prior
to the end of the Support Services Term or any renewal period thereof or unless terminated as otherwise provided herein.

A. 13 Honeywell SAAS Terms

A.13.1 Notwithstanding anything else to the contrary in this Agreement, the following Honeywell SAAS Terms apply solely to the Honeywell Forge Predictive Maintenance services ("SaaS", "Offering", or "SaaS Offering") described in Section B. 2 of this Attachment D:
A.13.1.1 Agreement. The software-as-a-service offering for which you have contracted and have purchased Use Rights ("SaaS") is identified in Section B. 2 of this Attachment D.
A.13.1.2 Parties. "Honeywell", "we", "us" or "our" means Honeywell International Inc. or Affiliate(s) who execute or assent to this Agreement. "You" or "your" means collectively the other entity(ies) executing or assenting to this Agreement. "Affiliate" means any entity that controls, is controlled by, or is under common control with, another entity. An entity "controls" another if it owns directly or indirectly a sufficient voting interest to elect a majority of the directors or managing authority or otherwise direct the affairs or management of the entity.
A.13.1.3 Use Rights. Subject to payment of agreed fees and strict compliance with the terms of access and acceptable use we will provide you solely for your internal business purposes: (a) remote access to the SaaS through means we provide (which may include online portals or interfaces such as https, VPN or API); and (b) a limited, revocable, nonexclusive, non-assignable, non-transferable license to: (i) download, install, update or allow us to update (when applicable), and use software we provide solely in support of your usage of the SaaS; and (ii) use SaaS documentation as reasonably required in connection with the SaaS (collectively, "Use Rights"). Use Rights continue for the duration of the period stated in Attachment D. This Attachment D may list metrics, including user number, data volume, sensors or other means to measure usage or fees ("Usage Metrics"). Use Rights are subject to Usage Metrics and restrictions in the Agreement. If you exceed Usage Metrics, we may suspend access until you pay required fees. You, your employees and any party accessing the SaaS on your behalf ("Users") may exercise Use Rights, provided that, you must bind them to the Agreement and are responsible for their compliance with it, any breach by them and their acts and omissions. You may not resell Use Rights or permit third parties (except Affiliates or service providers) to be Users or make copies of the SaaS (except for back up) except as agreed by us in writing. We have no responsibility with respect to actions or inactions of Users.
A.13.1.4 Accounts. You may be required to download a mobile app, or visit an internet portal or site, through which you access the SaaS and set up accounts including issuance or authentication credentials. In operating your account you and Users must: (i) maintain strict confidentiality of user names, passwords or other credentials; (ii) assign accounts to unique individuals and not allow others to use your credentials or access your account, including sharing among multiple Users; (iii) immediately notify us of any unauthorized use or breach of security related to your account; (iv) submit only complete and accurate information; (v) maintain and promptly update information if it changes; and (vi) manage User access. We may use rights management features (e.g., lockout) to prevent unauthorized use.
A.13.1.5 Acceptable Use. The Use Rights are the only acceptable use of the SaaS. You will not, and will not permit any person or entity to, use the SaaS for purposes of, or in connection with: (a) reverse engineering, making machine code human readable or creating derivative works or improvements; (b) interfering with its security or operation (including probing, scanning or testing the vulnerability of security measures or misrepresenting transmission sources); (c) creating, benchmarking or gathering intelligence for a competitive offering; (d); infringing another's IPR; (e) employing it in hazardous environments requiring fail-safe performance where failure could lead directly or indirectly to personal injury or death or property or environmental damage; (f) employing it as a substitute for a thirdparty monitored emergency notification system; (g) use that would reasonably be expected to cause liability or harm to us or our customers or breach the Agreement; and/or (h) critical control of your environment, emergency situations, life safety or critical purposes. Violation of the restrictions in this Section is a breach of Use Rights.
A.13.1.6 Set Up, Support. Initial set up and configuration are provided if stated in this Attachment D. We will manage, maintain and support the SaaS ("Support") in accordance with the policies specified in this Agreement or, if none are specified, we will use commercially reasonable efforts to maintain the SaaS, repair reproducible defects and make available as a whole 99% of the time $24 \times 7 \times 365$ subject to scheduled downtime, routine and emergency maintenance and force majeure. Except as otherwise expressly set forth in this Agreement, you are responsible the connectivity required to use the SaaS and for maintaining the equipment and infrastructure that connects to the SaaS. Set up and Support excludes device or Third-Party Application set up unless stated in this Agreement. We are not responsible or liable for issues, problems, unavailability, delay or security incidents arising from or related to: (i)
conditions or events reasonably outside of our control; (ii) cyberattack; (iii) the public internet and communications networks; (iv) data, software, hardware, services, telecommunications, infrastructure or networking equipment not provided by us or acts or omissions of third parties you retain; (v) your and Users negligence or failure to use the latest version or follow published documentation; (vi) modifications or alterations not made by us; (vii) loss or corruption of data; (viii) unauthorized access via your credentials; or (ix) your failure to use commercially reasonable administrative, physical and technical safeguards to protect your systems or data or follow industry-standard security practices. We reserve the right to modify the SaaS at any time without degrading its core functionality. We may monitor usage.
A.13.1.7 Term, Termination. The Agreement commences on the effective date of, and continues for the duration in, this Agreement in addition to any Auto-Renewal term, unless terminated earlier in accordance with its terms ("Term"). The provisions of A.12.1 of this Agreement shall apply and are hereby incorporated by reference. Except for material breach or if stated in this Agreement, you may not terminate your use of the SaaS for convenience during the subscription period set out in the Agreement or during an Auto-Renewal term. We may terminate immediately upon written notice if the SaaS is provided at no charge, your use is fraudulent, continued use would subject us to third party liability or we cease making the SaaS generally available to third parties. We may suspend Use Rights if we determine that you or Users are or may violate the Agreement (including a failure to pay fees by the due date) or pose a security threat. The non-breaching party may terminate if the other party materially breaches and fails to cure within 30 days of written notice. During suspension, you and Users will not have access to all or part of the SaaS and may be unable to access Input Data. Upon termination or expiry your Use Rights will expire, you will no longer have access to your Input Data, and you must delete all copies of SaaS and credentials. Section A.13.1.5 to A.13.1.19 and those portions of this Attachment D and the Agreement that by their nature should survive, survive termination or expiration.
A.13.1.8 Data. You retain all ownership or other rights over data that you or persons acting on your behalf input, upload, transfer or make available in relation to, or which is collected from your devices or equipment by, the SaaS ("Input Data"). We and our Affiliates have the right to duplicate, analyze, transfer, modify and otherwise use Input Data to provide, improve or develop our offerings. You have sole responsibility for obtaining all consents and permissions (including providing notices to Users or third parties) and satisfying all requirements necessary to permit our use of Input Data. You will, at your cost and expense, defend, indemnify and hold harmless us and our Affiliates, sub-contractors and licensors from and against all losses, awards and damages (including attorneys' fees), arising out of claims by third parties related to our possession, processing or use of Input Data in accordance with the Agreement or you or Users' infringement, misappropriation or violation of our or a third party's IPR (except if caused by your authorized use of the SaaS). Unless agreed in writing, we do not archive Input Data for your future use. Your Input Data may be transferred outside of its country of origin. You consent to such any transfers of your Input Data outside of its country of origin, except that Personal Data is subject to the Data Processing Terms.
A.13.1.9 IP. All right, title and interest, including all intellectual property rights (including copyrights, trademarks and patents), proprietary rights (including trade secrets and know-how), and moral rights (including rights of authorship and modification) throughout the world ("IPR") in and to the SaaS and all of its derivative works, modifications and improvements, are retained by Honeywell or its licensors and are our confidential information. We own all IPR that is: (i) developed by us or our Affiliates by processing or analysis of Input Data (excluding Input Data itself, but including derived data that is sufficiently different from Input Data so that Input Data cannot be identified from analysis or further processing of such derived data); or (ii) generated through support, monitoring or other observation of your and your Users' use of the SaaS. The operation and performance of the SaaS is our confidential information. If you provide any suggestions, comments or feedback regarding the SaaS, you hereby assign to us all right, title and interest in and to the same without restriction. You and Users shall not remove, modify or obscure any IPR notices on the SaaS.
A.13.1.10 IP Indemnification. We will at our cost and expense, defend any third-party claim, suit or proceeding against you and your Affiliates and sub-contractors, solely to the extent arising out of claims by third parties that your use of the Offering (as provided by us) in accordance with the Agreement, infringed, violated or misappropriated their copyright, patent or trademark ("Third-Party IP Claim"), and we will pay the (i) damages, and (ii) reasonable and verifiable third-party out-of-pocket costs and expenses (including reasonable attorney's fees), which are finally awarded against you by final judgment of a court of competent jurisdiction (or pursuant to a settlement agreed to in writing by us), directly attributable to such Third-Party IP Claim. We have no indemnification obligations to the extent a claim arises from: (a) data you provide; (b) your use of the outputs of the Offering or unauthorized use; (c) combining the Offering with goods, technology or services not supplied by us; (d) modifications by anyone other than us; or (e) compromise or settlement made by you without our written consent. If the Offering is held to infringe, or we believe it may be infringing, we may undertake at least one of the following with respect to the allegedly infringing materials at our option: (i) procure a license to allow your use; (ii) modify the Offering to make
it non-infringing; or (iii) procure a license to a reasonable substitute product. If we cannot do one of these within a reasonable period of time, we may terminate the Agreement by notice and refund a pro-rata portion of pre-paid fees received during the applicable period without any further liability. This Section sets out your sole and exclusive remedy in case of a Third-Party IP Claim. Our obligations under this Section are contingent upon you notifying us in writing of a Third-Party IP Claim promptly upon becoming aware thereof. We have the sole right to control the defense and/or settlement of each Third-Party Claim and you will provide reasonable assistance.
A.13.1.11 Security. Security is governed by the policies in this Agreement or if none are specified: (i) we will use commercially reasonable administrative, physical and technical safeguards to protect personal data and Input Data and follow industry-standard security practices, as set out in the Security Practices at $\mathrm{https}: / / \mathrm{hwll} . c o /$ securitypractices; and (ii) following a confirmed breach of security leading to the accidental or unlawful destruction, loss, alteration or unauthorized access, disclosure or use of your Personal Data or Input Data we will notify you without undue delay and as relevant information becomes available to assist you in meeting your potential reporting or notice obligations under applicable law and you will work with us in good faith to develop related public statements or required notices. You are solely responsible for costs and liability incurred due to unauthorized use or access through your or Users' account credentials or systems and for security of on-premises software and hardware.
A.13.1.12 Third-Party Applications. The SaaS may contain features designed to interoperate with applications, software, or platforms provided by you or a third party ("Third-Party Applications"). Your use of a Third-Party Application is subject to a separate agreement between you and the relevant third party. You grant us all rights necessary to host, copy, use, transmit, or display Third-Party Application to facilitate interoperation with the SaaS. Honeywell does not warrant or support Third-Party Applications and cannot guarantee their continued security, availability or performance. Your use of a Third- Party Application may enable the transfer of Input Data or Personal Data outside of the SaaS and you are solely responsible for any liability or loss relating to such transfer.
A.13.1.13 Licenses. The Offering may include open-source software ("OSS") and to the extent required by licenses covering OSS, such licenses may apply to OSS in lieu of this Agreement. If an OSS license requires us to make an offer to provide source code or related information in connection with that OSS, such offer is hereby made. If required by our written contract with them, certain of our licensors are third-party beneficiaries of the Agreement.
A.13.1.14 Confidentiality. All non-public, confidential or proprietary information disclosed by a party to the other party in performance of this Agreement ("Confidential Information") will be protected using the same degree of care, but no less than reasonable care, as the recipient uses to protect its own Confidential Information and will not, without the written consent of the disclosing party, be used or disclosed except for the purpose of, or as permitted by, this Agreement and only by the receiving party's affiliates, employees and service providers who are bound to substantially similar obligations of confidentiality and have a need to know. Each Party will be responsible for breaches of the confidentiality obligations by its affiliates, employees or service providers. Receiving party will keep Confidential Information confidential for 5 years from disclosure. Except as set out in this Agreement, information will not be Confidential Information unless (a) marked "CONFIDENTIAL" or similar at disclosure; (b) disclosed orally or visually but identified as confidential at disclosure and designated as confidential in writing in 30 days of disclosure summarizing the Confidential Information sufficiently for identification, or (c) it should reasonably be understood to be confidential given the nature of the information as sensitive and non-public. Confidential Information excludes information that: (d) was already known to recipient without restriction; (e) is publicly available through no fault of recipient; (f) is rightfully received by recipient from a third party without a duty of confidentiality; or (g) is independently developed. A party may disclose Confidential Information when compelled to do so by law if it provides prior notice to the other party and reasonable opportunity to contest or limit disclosure, unless a court orders that the other party not be given notice. The Agreement and the internal operation and performance of the SaaS are our Confidential Information.
A.13.1.15 Privacy. We may process certain data and information about you, users, and/or your or their employees, customers, contractors, or Affiliates that are recognized under applicable law as "personal data" or equivalent terms ("Personal Data") in connection with the Agreement. If we process Personal Data on your behalf, our Data Processing Terms, available at https://hwll.co/dataprocessingterms, apply. We collect and use such Personal Data in accordance with our Privacy Statement, available at https://www.honeywell.com/us/en/privacy-statement. Each Party will comply with applicable privacy and data protection laws.
A.13.1.16 Warranty Disclaimer. EXCEPT AS EXPRESSLY SET FORTH IN THE AGREEMENT THE SAAS AND SUPPORT ARE PROVIDED ‘AS IS’ WITH NO WARRANTIES OR REPRESENTATIONS OF ANY KIND, WHETHER EXPRESS, IMPLIED OR STATUTORY. WE ARE NOT RESPONSIBLE OR LIABLE FOR

YOUR (OR YOUR USERS) USE OF THE SAAS OR INTERPRETATION OF OR ACCURACY OF ITS OUTPUT. TO THE MAXIMUM EXTENT PERMITTED BY LAW, WE EXPRESSLY DISCLAIM ALL CONDITIONS, WARRANTIES AND REPRESENTATIONS INCLUDING NON-INFRINGEMENT, MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR PURPOSE. NOTHWITHSTANDING THE FOREGOING, WE DO NOT WARRANT THAT THE SAAS WILL MEET YOUR REQUIREMENTS, OR THAT IT WILL OPERATE WITHOUT INTERRUPTION, OR BE ERROR FREE.
A.13.1.17 Limitation. EXCEPT FOR BREACH OF SECTION A.13.1.3 (USE RIGHTS), A.13.1.5 (ACCEPTABLE USE) OR A.13.1.19 (IP) OR FEES PAYABLE, NEITHER PARTY WILL IN RELATION TO THESE SAAS TERMS BE LIABLE FOR (a) LOST PROFITS, REVENUES, GOODWILL, OPPORTUNITY OR ANTICIPATED SAVINGS; OR (b) INDIRECT, INCIDENTAL, EXEMPLARY, PUNITIVE, SPECIAL OR CONSEQUENTIAL DAMAGES. EXCEPT IF STATED IN THE AGREEMENT, FOR FEES PAYABLE OR EXCLUSIONS, EACH PARTY'S CUMULATIVE AND AGGREGATE LIABILITY WILL IN RELATION TO THESE SAAS TERMS BE LIMITED TO DIRECT DAMAGES IN AN AMOUNT EQUAL TO THE GREATER OF: (a) TOTAL AMOUNTS PAID FOR THE SAAS DURING THE 6 MONTHS IMMEDIATELY PRECEDEING THE FIRST EVENT GIVING RISE TO THE CLAIM OR (b) U.S. \$50,000. ALL CLAIMS THAT A PARTY MAY HAVE WILL BE AGGREGATED AND MULTIPLE CLAIMS WILL NOT ENLARGE THE FOREGOING LIMIT. OUR LIABILITY UNDER EVALUATION OR TRIAL RIGHTS IS LIMITED TO U.S. $\$ 1,000$. "Exclusions" are: (i) claims resulting from either party's fraud or willful misconduct; (ii) a party's breach of confidentiality obligations (except in relation to Input Data and Personal Data for which the cap applies) or Sections A.13.1.3 (Use Rights), A.13.1.5 (Acceptable Use) or A.13.1.9 (IP); (iii) a party’s indemnity obligations under Section 7 (Privacy) and Section A.13.1.10 (IP Indemnification); and (iv) claims against us or our Affiliates relating to possession, processing or use of Input Data or Personal Data in accordance with this Agreement. All claims and causes of action must be brought within six months of being discovered. Nothing stops a party from seeking declaratory, injunctive or other equitable relief from a court of competent jurisdiction or excludes or limits a Party's liability to the other for any matter that cannot lawfully be excluded or limited. LIMITATIONS AND EXCLUSIONS APPLY TO ALL CLAIMS AND CAUSES OF ACTION ARISING OUT OF OR IN RELATION TO THE AGREEMENT REGARDLESS OF FORM.
A.13.1.18 Compliance. You must comply with all laws and regulations applicable to your use of Offering including data privacy, localization, and anti-bribery. Your rights to use the Offering is subject to such compliance. For purposes of FARs, DFARs and access by governmental authorities, the Offering is "commercial computer software", "commercial computer software documentation" and "restricted data" provided to you under "Limited Rights" and "Restricted Rights" and only as commercial end items. You represent use of the Offering will comply with all sanctions laws administered by OFAC, other U.S. regulatory agencies, the European Union and its Member States, the United Kingdom, and the United Nations ("Sanctions Laws"). You represent that you, your Affiliates or Users are not: (i) named on a governmental denied party or restricted list, including but not limited to: the Office of Foreign Assets Control ("OFAC") list of Specially Designated Nationals and Blocked Persons ("SDN List"), the OFAC Sectoral Sanctions Identifications List ("SSI List"), and the sanctions list under other Sanctions Laws; (ii) organized under, ordinarily resident in, or physically located in a jurisdiction subject to comprehensive sanctions administered by OFAC, (including, Cuba, Iran, North Korea, Syria, and the Crimea region); or (iii) owned or controlled, directly or indirectly, 50% or more in the aggregate, by one or more individuals described in (i) or (ii) (collectively, "Sanctioned Persons"). You will not permit Sanctioned Persons to use, to access, or benefit from the Offering, and you will not export, re-export, or otherwise transfer the Offering for any purpose prohibited by Sanctions Laws. You will not submit to the Offering any data subject to the U.S. International Traffic in Arms Regulations or other Sanctions Laws. Your violation of this Section will be a material breach. You agree to notify us immediately, in writing, of actual or reasonably suspected violations. We may limit, suspend, or terminate the Offering or take other actions reasonably necessary to comply with applicable law without liability. You agree to indemnify us if we become subject to liability as a result of your non-compliance with applicable law.
A.13.1.19 Miscellaneous. Fees are invoiced in advance with invoices payable within 30 days of invoice date unless set out in this Agreement. Upon Auto-Renewal fees are paid in accordance with the relevant list price (plus applicable taxes) then in effect. Fees paid are non-cancellable and nonrefundable. Payments are in USD (unless agreed by us in writing) and must be made in accordance with the "Remit To" field on each invoice. We may, from time to time and in our sole discretion, issue surcharges to recover Honeywell's increased costs arising from or related to, without limitation: (a) foreign currency exchange variation; (b) increased cost of third-party content, freight labor materials or component costs; (c) impact of duties, tariffs, and other government actions; and (d) increased costs due to inflation (collectively, "Economic Surcharges"). If a dispute arises with respect to Economic Surcharges, and that dispute remains open for more than fifteen (15) days, we may, in our sole discretion, withhold performance and future shipments or combine any other rights and remedies as may be provided under the Agreement or permitted by law
until the dispute is resolved. The terms of this Section prevail in the event of inconsistency with any other terms in the Agreement. Any Economic Surcharges, as well as the timing, effectiveness, and method of determination thereof, will be separate from and in addition to any changes to pricing that are affected by any other provisions in the Agreement. Descriptions of future product direction or intended updates (including new or improved features or functions) other than the features and functions deployed as of date of this Agreement are intended for information purposes only and are not binding commitments on us to deliver any material, code or functionality. The development, release and timing of any such updates is at our sole discretion unless agreed otherwise in writing. We reserve the right to charge additional fees for new or improved features or functions. During the term and 24 months after, we or our designee can, during normal business hours upon reasonable notice, access, inspect and audit, your compliance with the Agreement and you will give access to information and personnel as we may reasonably request. Notwithstanding any other terms or provisions to the contrary, these Honeywell SaaS Terms solely apply and control with regard to Honeywell SaaS Offerings. Conflicts among the Agreement will be resolved by giving precedence to these SaaS Terms with regard to the Honeywell Forge Predictive Maintenance Services. Customer purchase orders are identified only to authorize payment and terms or conditions in any customer purchase order are not a part of the Agreement or controlling. You must comply with all laws and regulations applicable to your use of the SaaS including data privacy or localization, anti-bribery and export control laws (i.e., export to embargoed, prohibited or restricted countries or access by prohibited, denied or designated persons) and your rights to use the SaaS is subject to such compliance.

PART B. SUPPORT SERVICES SCOPE DESCRIPTION

B. 1 Guarantee Analysis Services

B.1.1 Scope - Honeywell will implement the guarantee analysis services outlined in Section B.1.3 (the "M\&V Services") for the following ECMs. The M\&V Services are to be performed consistent with the terms of the guarantee set forth in Part C, and the Schedule of Guaranteed Savings and related provisions set forth in Part D, in each case of this Attachment D. Certain defined terms are set forth in Part C.

List of Covered Facilities, Meters, Energy Conservation Measures ("ECMs) by Service Offering:

(a)	(b)	(c)	(d)
Facility	LDC-Meter \# / Utility Type	ECMs (list only ECMs associated with meter listed in Column (b))	Related M\&V Services Subsection
Roosevelt High School	Electric: PGEG Acct \#: 1593627000 Meter\#: 80345965-0	ECM 1 - LED Lighting and Lighting Controls Upgrade ECM 5 - Install De-Stratification Fans ECM 6 - Building Management System Upgrades ECM 7 - Building Envelope Improvements ECM 9 - Install Walk-In Freezer/Coolers Controllers ECM 10 - Install Solar PV System	1.4.1
Roosevelt High School	Electric: PGEG Acct \#: 1593677201 Meter\#: 80351580-0	ECM 1 - LED Lighting and Lighting Controls Upgrade	1.4.1
Roosevelt High School	Natural Gas National Grid Acct \#: 9134266004 Meter \#: 5768146	ECM 1 - LED Lighting and Lighting Controls Upgrade ECM 2 - Boiler Plant Upgrades ECM 3 - DHW Heater Upgrades ECM 5 - Install De-Stratification Fans ECM 6 - Building Management System Upgrades ECM 7 - Building Envelope Improvements ECM 8 - Pipe Insulation	1.4.5
Roosevelt Middle School	Electric: PGEG Acct \#: 1593601821 Meter\#: 80340663-0	ECM 1 - LED Lighting and Lighting Controls Upgrade ECM 4 - Mechanical Upgrades ECM 5 - Install De-Stratification Fans ECM 6 - Building Management System Upgrades ECM 7 - Building Envelope Improvements ECM 9 - Install Walk-In Freezer/Coolers Controllers ECM 10 - Install Solar PV System	1.4.1
Roosevelt Middle School	$\begin{aligned} & \text { Natural Gas - } \\ & \text { National Grid } \\ & \text { Acct \#: } \\ & 5396235005 \\ & \text { Meter \#: } 5101469 \end{aligned}$	ECM 1 - LED Lighting and Lighting Controls Upgrade ECM 2 - Boiler Plant Upgrades ECM 5 - Install De-Stratification Fans ECM 6 - Building Management System Upgrades ECM 7 - Building Envelope Improvements ECM 8 - Pipe Insulation	1.4.5

(a)	(b)	(c)	(d)
Facility	LDC-Meter \# / Utility Type	ECMs (list only ECMs associated with meter listed in Column (b))	Related M\&V Services Subsection
Centennial Ave Elementary School	Electric: PGEG Acct \#: 1591404651 Meter\#: 80346441-0	ECM 1 - LED Lighting and Lighting Controls Upgrade ECM 4 - Mechanical Upgrades ECM 5 - Install De-Stratification Fans ECM 6 - Building Management System Upgrades ECM 7 - Building Envelope Improvements ECM 9 - Install Walk-In Freezer/Coolers Controllers ECM 10 - Install Solar PV System	1.4.1
Centennial Ave Elementary School	Natural Gas - National Grid Acct \#: 4330629004 Meter \#: 5863506	ECM 1 - LED Lighting and Lighting Controls Upgrade ECM 5 - Install De-Stratification Fans ECM 6 - Building Management System Upgrades ECM 7 - Building Envelope Improvements ECM 8 - Pipe Insulation	1.4.5
Ulysses Byas Elementary School	Electric: PGEG Acct \#: 1592401921 Meter\#: 80345966-0	ECM 1 - LED Lighting and Lighting Controls Upgrade ECM 4 - Mechanical Upgrades ECM 5 - Install De-Stratification Fans ECM 6 - Building Management System Upgrades ECM 7 - Building Envelope Improvements ECM 9 - Install Walk-In Freezer/Coolers Controllers ECM 10 - Install Solar PV System	1.4.1
Ulysses Byas Elementary School	Natural Gas - National Grid Acct \#: 174815000 Meter \#: 5153116	ECM 1 - LED Lighting and Lighting Controls Upgrade ECM 5 - Install De-Stratification Fans ECM 6 - Building Management System Upgrades ECM 7 - Building Envelope Improvements ECM 8 - Pipe Insulation	1.4.5
Washington-Rose Elementary School	Electric: PGEG Acct \#: 1594137921 Meter\#: $96793831-0$	ECM 1 - LED Lighting and Lighting Controls Upgrade ECM 5 - Install De-Stratification Fans ECM 6 - Building Management System Upgrades ECM 7 - Building Envelope Improvements ECM 9 - Install Walk-In Freezer/Coolers Controllers ECM 10 - Install Solar PV System	1.4.1
Washington-Rose Elementary School	Natural Gas - National Grid Acct \#: 5463965009 Meter \#: 5768590	ECM 1 - LED Lighting and Lighting Controls Upgrade ECM 2 - Boiler Plant Upgrades ECM 5 - Install De-Stratification Fans ECM 6 - Building Management System Upgrades ECM 7 - Building Envelope Improvements ECM 8 - Pipe Insulation	1.4.5
Washington-Rose Elementary School	Natural Gas - National Grid Acct \#: 4218566006 Meter \#: 6027459	ECM 3 - DHW Heater Upgrades	1.4.5

B.1.1.1 General Descriptions - The following are general descriptions of one or more approaches to providing guarantee analysis services. The specific details of the M\&V Services relating to the Retrofit as set forth in this Support Services Agreement take precedence over these descriptions.

Option A-Retrofit Isolation with Key Parameter Measurement

This option is based on a combination of measured and estimated factors when variations in factors are not expected. Measurements are spot or short-term and are taken at the component or system level, both in the baseline and postinstallation cases. Measurements should include the key performance parameter(s) which define the energy use of the ECM. Estimated factors are supported by historical or manufacturer's data. Savings are determined by means of engineering calculations of baseline and post-installation energy use based on measured and estimated values. Savings are calculated using direct measurements and estimated values, engineering calculations and/or component or system models often developed through regression analysis. Adjustments to models are not typically required.

Option B-Retrofit Isolation with All Parameter Measurement

This option is based on periodic or continuous measurements of energy use taken at the component or system level when variations in factors are expected. Energy or proxies of energy use are measured continuously. Periodic spot or short-term measurements may suffice when variations in factors are not expected. Savings are determined from analysis of baseline and reporting period energy use or proxies of energy use. Savings are calculated using direct measurements, engineering calculations, and/or component or system models often developed through regression analysis. Adjustments to models may be required.

Option C - Utility Data Analysis

This option is based on long-term, continuous, whole-building utility meter, facility level, or sub-meter energy (or water) data. Savings are determined from analysis of baseline and reporting period energy data. Typically, regression analysis is conducted to correlate with and adjust energy use to independent variables such as weather, but simple comparisons may also be used. Savings calculations use regression analysis of utility meter data to account for factors that drive energy use. Adjustments to models are typically required.

Option D-Calibrated Computer Simulation

Computer simulation software is used to model energy performance of a whole-facility (or sub-facility). Models must be calibrated with actual hourly or monthly billing data from the facility. Implementation of simulation modeling requires engineering expertise. Inputs to the model include facility characteristics; performance specifications of new and existing equipment or systems; engineering estimates, spot-, short-term, or long-term measurements of system components; and long-term whole-building utility meter data. After the model has been calibrated, savings are determined by comparing a simulation of the baseline with either a simulation of the performance period or actual utility data. Savings calculations are done based on computer simulation model (such as eQUEST) calibrated with whole-building or end-use metered data or both. Adjustments to models are required.
B.1.2 Coverage - The M\&V Services includes all labor, travel, and expenses to perform the services and frequency described in Section B.1.3. In general, and subject to details of the M\&V Plan, Honeywell will provide a single (1) reporting submission of the determination of the amount of Cost Avoidance for each Guarantee Year. Services not explicitly described in Section B.1.3, including Customer Guarantee Responsibilities, are not included.

B.1.3 M\&V Plan: In general, the M\&V Services:

(a) are required to be performed for the entire Guarantee Term;
(b) may employ one or more of Options A, B, C or D; and
(c) include delivering a report on an annual basis, for either the entire Guarantee Term, or for a shorter M\&V reporting term.

The details of the M\&V Services are set forth in the M\&V Plan, as described in detail in Exhibit D-7, which takes precedence over the general description in this Section B.1.3.
B.1.4 M\&V Offerings - In coordination with Section B.1.1, HONEYWELL will perform the Measurement \& Verification (M\&V) offerings checked below:

B B. 4. \quad Retrofit Isolation Energy Audit for Option A/B Verified ECMs - HONEYWELL will provide Option A energy guarantee auditing services as detailed in Attachment D, and Exhibits to Attachment D for specific Energy Conservation Measures (ECMs) identified in Attachment D and/or Exhibits to Attachment D as using Option A methodologies for Measurement and Verification. HONEYWELL will provide this one-time determination of the quantity of energy avoidance of the CUSTOMER'S facility for the First Guarantee Year only. Option A methods will be applied on an ECM specific basis (i.e., isolated to the retrofit) and Energy Cost Avoidance for a Guarantee Year will be quantified and summarized on an ECM basis. After the ECM's potential-to-save has been verified (Section B.1.3) HONEYWELL shall either stipulate the quantity of cost avoidance or determine the cost avoidance from engineering calculations and measurement of specific variables as described in Section D.1.1.1. Utility bill auditing (Option C) and reconciliation of Option A results to utility meter bill data is not included. The Option A/B retrofit isolation method was selected by the CUSTOMER to provide an economical reconciliation method and to minimize the interactive effects on the determination of cost avoidance due to changes to the site or facilities from the baseline conditions.

HONEYWELL will provide a single (1) reporting submission of the determination of energy avoidance for the First Guarantee Year. The Energy Avoidance quantified in the First Guarantee Year will be stipulated as the annual Energy Avoidance for each Guarantee Year of the remaining contract term. Reporting of Cost Avoidance will occur each year of the term and the monetization of Cost Avoidance will be determined as described in Section D.1.1.1.

Work Coverage: Utility Meters listed in Section B.1.1 designated as Option A
Term Coverage:__Year 1 Monitoring; Year 2 to End of Term stipulated based on Year 1 Results
Option A/B Audit Report section will be submitted:

\square 1-Time Only	\square Quarterly
\square Semi-Annually	\square Annually

B.1.4.2. - Reserved
 B.1.4.3. - Reserved
 B.1.4.4. - Reserved

B B.1.4.5 Utility Bill Energy Audit for Option C verified ECMs - HONEYWELL will provide Option C energy guarantee auditing services as detailed in Attachment D and Exhibits to Attachment D for specific Energy Conservation Measures (ECMs) identified in Attachment D and/or Exhibits to Attachment D as using Option C methodologies for Measurement and Verification to quantify the derived Energy Cost Avoidance of the CUSTOMER's facility. Under Option C services, HONEYWELL will analyze CUSTOMER'S energy use and costs against an "established baseline" described in Attachment D and Exhibits to Attachment D. HONEYWELL will use energy auditing software to track monthly facility costs, energy consumption, and Energy Cost Avoidance and to quantify and report on changes in energy usage due to changes in billing periods and weather. HONEYWELL will adjust the baseline for changes in energy usage due to changes in variables including, but not limited to billing periods, weather, production, occupancy, building load, conditioned building area, equipment operation, and scheduling methodologies etc. as defined in Attachment D and Exhibits to Attachment D. These routine and non-routine baseline adjustments will be calculated using industry-standard engineering calculations. Reporting of Cost Avoidance will occur each year of the term and the monetization of Cost Avoidance will be determined as described in Section D.1.1.1.

Work Coverage: Fuel Savings Only for All Applicable ECMs
Term Coverage: Year 1 to End of Term
Option C Audit Report section will be submitted:

1-Time Only
Semi-Annually

Quarterly
】 Annually

B.2. Honeywell Forge Predictive Maintenance

Honeywell will provide the following services enabled by Honeywell Forge Predictive Maintenance to Customer with respect to the mechanical equipment connected to the Niagara Tridium system identified in Attachment A under ECM 6 (Building Management System Upgrades) for all five (5) school buildings. As used herein, "Agreement" means the agreement between Honeywell and Customer of which this Work Scope Document is a part, as amended and together with all exhibits, schedules and attachments incorporated into such agreement.

The scope identified in Attachment A under ECM 6 will cover the effort to retrieve the technical details of the local HVAC distribution system and the creation of the digital twin model in the Honeywell cloud needed to run Honeywell Forge Predictive Maintenance. This scope includes control systems and methodology validation, internet and data connectivity to the cloud, BMS point history changes, and software patching, updates and installation. Customer will fully cooperate with Honeywell to enable and accommodate this scope including, without limitation, giving Honeywell and its subcontractors (if any) such access to Customer's facilities and systems as Honeywell may reasonably request.

To support monitoring and diagnostics, Honeywell may install additional software on Customer's applicable building automation system(s) (the "BMS System"). Such software will remain the property of Honeywell or its nominated software licensor and shall be removed from the BMS System and returned to Honeywell at Honeywell's request. Honeywell Forge Predictive Maintenance is designed to identify certain faults or anomalies in the Customer's mechanical equipment. Once such faults or anomalies are identified, these are converted to service work orders and are dispatched to service technicians for further investigation of the root causes of the identified fault or anomaly. Such service work orders represent "Service Cases". Customer and Honeywell will agree upon Honeywell's performance of such work and Customer will pay Honeywell an extra fee at Honeywell's hourly rates set forth in the Agreement (or if no such rates are set forth, at Honeywell's standard hourly rates) for such work plus the cost of any materials, subject to Honeywell's then-prevailing markup. Honeywell shall have no obligation to address or respond to emergencies except to the extent expressly provided in the Agreement.

Honeywell will establish a connection from the BMS System to Honeywell's cloud and its related HVAC and energy analytics tools. These tools are intended to identify certain faults or anomalies in the operation of Customer's mechanical equipment. Faults or anomalies may be raised as Service Cases as noted above.

Honeywell will make available on the Honeywell Forge Portal summary key performance indicators ("KPI") for the five (5) school buildings identified in Attachment A under ECM 6 - as such KPIs are developed by Honeywell in its sole discretion. The KPIs are available in the following key categories:

- Comfort performance
- Energy performance (if and to the extent there are electricity meters connected)
- Maintenance performance

Honeywell will periodically provide a service report that describes the status of Service Cases initiated or received by Honeywell that are new, active or closed in that particular period. The reporting frequency may be monthly or such other periodic basis as determined by Honeywell, in its sole discretion.

Service Cases, whether raised as a result of analytics, scheduled maintenance activities or otherwise, may be addressed by Honeywell through the use of remote access software. This software is supplied by Honeywell and remains Honeywell's property. Upon Honeywell's request, Customer will enable such remote access for Honeywell through a secure Internet connection maintained by Customer and configured as requested by Honeywell.

Honeywell's Product Terms released from time to time form part of this Agreement. Honeywell may update these Product Terms from time to time. Honeywell will make commercially reasonable efforts to notify Customer in advance of the effective date of any material changes. Continued use of the SaaS Offering constitutes Customer's consent to such changes.

PART C. GUARANTEE TERMS

C.1. Definitions

When used in this Agreement, the following capitalized words shall have the meanings ascribed to them below:
"Annual Scheduled Savings" means for any applicable Guarantee Year, the amount set forth in the Schedule of Guaranteed Savings in Section D.1.
"Baseline" or "Base Year" is the description that defines the Baseline Usage unit costs and facilities, systems, or equipment operations and characteristics, and environmental conditions that are to be used as the benchmark for determining Cost Avoidance. It may not always be one contiguous element of time and may be different from a 365 day annual period.
"Baseline Period" is the period of time (specified in Part D) coordinated with the Baseline Usage, including for the purpose of utility bill analysis, to allow the comparison of a Guarantee Year against a Baseline. The Baseline Period may not always be one contiguous element of time and may be different from a 365 -day annual period. Baseline information from non-contiguous elements of time may be normalized and assigned to a specified Baseline Period.
"Baseline," "Baseline Usage" or "Baseline Demand" is the calculated or measured Energy usage (demand) by a piece of equipment or a site prior to the implementation of the ECMs. Baseline physical conditions, such as equipment counts, nameplate data, and control strategies, will typically be determined through surveys, inspections, and/or metering at the site.
"Construction Period" is the time period between the start of the project installation and the date of Final Project Acceptance.
"Cost Avoidance" means the difference between the actual cost incurred during a selected time period versus what the cost would have been had the ECM not been implemented, including without limitation avoided, defrayed, or reallocated costs.
"Customer Guarantee Practices" are those practices identified herein, intended to achieve Cost Avoidance or necessary to the analysis thereof, as set forth in Section C.4.
"Energy" means utilities and may include electricity and fuels to operate HVAC equipment, facility mechanical and lighting systems, and energy management systems, and water and sewer usage, and secondary utilities such as district steam or compressed air as applicable.
"Energy Costs" means the cost of Energy.
"ECM" means an energy conservation measure, which is the installation of equipment or systems, or modification of equipment or systems as described in Attachment A, for the purpose of avoiding utility (energy, water, etc.) consumption and demand and costs and/or non-utility (O\&M, operational) costs.
"Excess Savings" means for any Guarantee Year, the amount, if any, by which the Cost Avoidance applicable to that Guarantee Year exceeds the Annual Scheduled Savings.
"Facilities" shall mean those buildings, or any other facility, location or infrastructure, where Savings will be realized.
"Financing Document" refers to that document, if any, executed between Customer and a third-party financing entity providing for payments from Customer to third-party financing entity.
"Final Project Acceptance" refers to date of Customer signature of the Final Project Acceptance Certificate (see Attachment J) indicating Customer acceptance of the installation of all of the ECMs.
"First Guarantee Year" is defined as the period beginning on the first (1st) day of the month following the date of Final Project Acceptance of the Work installed and ending on the day prior to the first (1st) anniversary thereof.
"Guarantee Period" is defined as the period beginning on the first (1st) day of the First Guarantee Year and ending on the last day of the final Guarantee Year, also known as the "Measurement and Verification Phase", "Measurement and Verification Period", "Performance Period", or "Performance Phase".
"Guarantee Year" is defined as the First Guarantee Year and each of the successive twelve (12) month periods commencing on the anniversary of the commencement of the First Guarantee Year throughout the Guarantee Term.
"Guaranteed Savings" is defined as the total scheduled amount of Cost Avoidance that Honeywell is guaranteeing, as set forth in Section D. 1 of Part D.
"Guarantee Term" shall have the meaning as defined in Section C.2.1 hereof, also referred to as "Term."
"M\&V" means measurement and verification.
"M\&V Systems and Equipment" as used in this Guarantee means the systems and equipment identified in Honeywell's Scope of Work and M\&V Services, including as set forth in Section C.4.1.
"Material Change" is defined as any change in the following which reasonably could be expected to increase or decrease Energy or Operational Costs at a Facility by a value more than five percent (5\%) of the Annual Scheduled Savings per utility meter or submeter, as applicable:
(1) manner of use of the Facility by Client;
(2) hours of operation of any equipment, building or energy system contained in the Facility;
(3) occupancy of the Facility;
(4) structure of the Facility;
(5) types of equipment used in the Facility; or
(6) conditions affecting energy use in the Facility.
"Measurement and Verification Plan" or "M\&V Plan" is defined as the plan providing details on how the Guaranteed Savings will be verified.
"Operational Costs" commonly referred to as O\&M costs, shall include the cost of operating and maintaining the Facilities, such as, but not limited to, the cost of inside and outside labor to repair and maintain affected systems and equipment, the cost of custodial supplies, the cost of replacement parts, the cost of deferred maintenance, the cost of lamp and ballast disposal, and the cost of new capital equipment.
"Potential-to-Save" or "Potential-to-Perform" by an ECM is satisfied when a measure is properly installed and has the potential to generate predicted levels of Cost Avoidance. Verification of an ECM's "potential-to-save" is satisfied upon Customer's signing of a Certificate of Substantial Completion, as set forth in Attachment J, or its equivalent.
"Retrofit" is the work provided by Honeywell as defined by the "ECMs."
"Retrofit Costs" are the sum of (i) the price for the Work; (ii) interest and other direct fees for financing required to be made by Customer pursuant to the Financing Document; and (iii) the payments required to be made by Customer for the M\&V Services.
"Retrofit Isolation Method", "RIM", "RIM Approach" or "Retrofit Isolation Method Approach" is an M\&V approach that verifies the Guaranteed Savings using techniques that isolate the Energy use of the ECM and affected systems separate from the Energy use of the rest of the Facility. This method is used to mitigate the interactive Energy effects of changes made to the Facility outside of Honeywell's control.
"Savings" is another term for Cost Avoidance.
"Total Guarantee Year Savings" is defined as the summation of Cost Avoidance realized by Facilities in each Guarantee Year as a result of the Retrofit, and Support Services provided by Honeywell, as well as Excess Savings, if any, carried forward from previous years.

C.2. Term and Termination

C.2.1 Guarantee Term. The Guarantee Term shall commence on the first (1st) day of the month following the date of Final Project Acceptance of the Work installed pursuant to this Agreement, and shall terminate at the end of the Support Services Term (as defined at the beginning of this Attachment D), unless terminated earlier as provided for herein.
C.2.2 Guarantee Termination. Customer shall continue to contract with Honeywell for the M\&V Services set forth in this Support Services Agreement for the entire Guarantee Term. Should this Support Services Agreement, or other existing agreements for the M\&V Systems and Equipment not covered in this Support Services Agreement, be terminated in whole or in part for any reason, the Guarantee Term shall also terminate on the same date. The Guaranteed Savings for a Guarantee Year in which such termination becomes effective shall be prorated as of the effective date of such termination, with a reasonable adjustment for seasonal fluctuations in Energy Costs and Operational Costs, and the Guaranteed Savings for all subsequent Guarantee Years shall be null and void. M\&V Services are conducted throughout the Guarantee Year and in the event Customer terminates during the year, Customer shall pay Honeywell the annual price for services prorated to the date of Honeywell's receipt of Customer's notice of termination.

C.3. Savings Guarantee

Guaranteed Savings Calculations Details

C.3.1 Guarantee of Savings. Honeywell guarantees to Customer that the identified Facilities will realize the total Guaranteed Savings through the combined value of all ECMs over the Guarantee Term, as defined herein.
C.3.1.1 Additional Savings Before Final Project Acceptance. All Cost Avoidance realized by Customer that result from activities undertaken by Honeywell prior to Final Project Acceptance, including any utility rebates or other incentives earned as a direct result of the installed ECMs or Support Services provided by Honeywell, will be applied toward the Guaranteed Savings for the First Guarantee Year.
C.3.1.2 Additional Savings After Final Project Acceptance. Additional Cost Avoidance, including any utility rebates or other incentives, that can be demonstrated, or earned, as a result of Honeywell's efforts that result in no additional costs to Customer beyond the costs identified in this Agreement will be included in the M\&V Report (as defined in Section C.3.2 below) for the applicable Guarantee Year(s).
C.3.1.3 Satisfaction of Guarantee. The Guaranteed Savings in each Guarantee Year are considered satisfied if the Total Guarantee Year Savings for such Guarantee Year equals or exceeds the Annual Scheduled Savings.
C.3.1.4 Excess Savings. Excess Savings shall be carried forward and applied to any future Guarantee Year(s). In the event Honeywell has previously paid Customer for a Guaranteed Savings shortfall in a past Guarantee Year, pursuant to Section C.3.1.5, then Excess Savings in current Guarantee Year shall be billed to Customer (but only up to any amounts previously paid by Honeywell for a shortfall) and Customer shall pay Honeywell within thirty (30) days after receipt of such bill, and any remaining Excess Savings shall be carried forward and applied against Guaranteed Savings shortfalls in any future Guarantee Year.
C.3.1.5 Savings Shortfalls. In the event that the Total Guarantee Year Savings in any Guarantee Year is less than the Annual Scheduled Savings, after giving credit for any Excess Savings carried forward from previous Guarantee Years pursuant to Section C.3.1.4, Honeywell shall, upon receipt of written demand from Customer, compensate Customer the amount of any such shortfall, in such form as agreed to by the parties, limited by the total value of the Guaranteed Savings, within sixty (60) days. Resulting compensation shall be Honeywell's sole liability for any shortfall in the Guaranteed Savings. In case of a shortfall, Honeywell reserves the right, subject to Customer approval, which shall not be unreasonably withheld, to implement additional operational improvements or conservation measures, at no cost to Customer, that will generate additional savings in future years of the Guarantee Term, and Honeywell has the option of extending its M\&V Services to verify successful performance.
C.3.1.6 Aggregation of Savings. The parties mutually agree that the Guaranteed Savings for this Agreement and the Guaranteed Savings for all previous active projects with guaranteed savings for this Customer shall be combined each year until the end of the original guarantee term for each project. Throughout the duration of the term for each specific phase the total savings will be utilized as an aggregate in satisfying the sum of the respective guarantees.

Guaranteed Savings Reconciliation Process

C.3.2 Guaranteed Savings Reconciliation Documentation. As part of the M\&V Services, and as set forth in the M\&V Plan, Honeywell will provide Customer with a Guaranteed Savings reconciliation report ("M\&V Report") within ninety (90) days after receipt of the information Customer is to provide as part of the Customer Guarantee Practices that is reasonably necessary to the preparation of the M\&V Report. Data and calculations utilized by Honeywell in the preparation of its M\&V Report will be made available to Customer, along with such explanations and clarifications as Customer may reasonably request.
C.3.2.1 Acceptance of M\&V Report. Customer will have forty-five (45) days to review the M\&V Report and provide written notice to Honeywell of non-acceptance of the Guaranteed Savings for that Guarantee Year. Failure to provide written notice within forty-five (45) days of the receipt of the M\&V Report will deem it accepted by Customer.
C.3.2.2 Guaranteed Savings Reconciliation. Guaranteed Savings will be determined in accordance with the methodology(s), operating parameters, formulas, and constants as described in this Attachment D and the exhibits, using the M\&V Services as defined herein, and/or additional methodologies defined by Honeywell that may be negotiated with Customer at any time. Upon contract execution, Customer agrees to and accepts the standard methods that Honeywell uses to conduct M\&V Services, including, but not limited to, RIM and Option C Utility Data Analysis (see Part C for RIM and Option C definitions as further detailed in the Measurement and Verification Plan in this Attachment D and the exhibits), as well as cost avoidance calculations, as inferenced by, referenced by or included in the energy calculations developed by Honeywell and attached hereto as an Exhibit D-5: Engineered Cost Avoidance Calculations.
C.3.2.3 Base Year Adjustments. The Baseline shall be adjusted to reflect:
(a) changes in occupied square footage;
(b) changes in energy-consuming equipment, including any repairs or improvements made to the equipment as part of this Agreement;
(c) changes in the Facilities;
(d) changes in Customer Guarantee Practices adversely affecting energy consumption and/or demonstrated operational changes;
(e) changes in weather between the Baseline Period and the Guarantee Year; and
(f) documented or otherwise conclusively established metering errors for the Baseline Period and/or any Guarantee Year adversely affecting Energy usage measurement.
C.3.2.4 Other Potential Guarantee Adjustments. Honeywell's Guaranteed Savings obligations under this Agreement are contingent upon:
(a) Customer following each of the Customer Guarantee Practices set forth herein;
(b) no alterations or additions being made by Customer to any of the M\&V Systems and Equipment without prior notice to and agreement by Honeywell;
(c) The absence of any event Customer is to report under Section C.4.5; and
(d) Honeywell's ability to render services not being impaired by circumstances beyond its control.

To the extent Customer defaults in or fails to perform fully any of its obligations under the Agreement, including without limitation any of the Customer Guarantee Practices, or the occurrence of any event Customer is to report under Section C.4.5, Honeywell may, in its sole discretion, adjust its Guaranteed Savings obligation or deem it met; provided, however, that no adjustment hereunder shall be effective unless Honeywell has first provided Customer with written notice of Customer's default(s) or failure(s) to perform and Customer has failed to cure its default(s) or failure(s) to perform within thirty (30) days after the date of such notice.

In addition, if for any reason any Facility and/or utility meter covered under this Agreement is materially unoccupied, closed, or discontinued, the Savings will be deemed realized for such Facility or meter, and the Guaranteed Savings will be adjusted accordingly. Honeywell will provide written notice of such adjustment to the Customer.
C.3.2.5 Adjustments for Material Changes. In the event of any increase or decrease in energy consumption and demand for any month resulting from a reported Material Change (see Section C.4.5.1) or unreported Material Change (see Section C.3.2.6), the amount of that increase shall be subtracted from, or that decrease shall be added to, the total energy consumption and demand for that month prior to the calculation of energy savings. If a reported or unreported Material Change affected energy consumption and demand in the same calendar month in the preceding year, the next preceding contract year where a Material Change has not occurred will be used to compute the value of the Material Change and the energy savings for the current month.
C.3.2.6 Unreported Material Changes. In the absence of any Material Change in the Facilities or in their operations reported by Customer under Section C.4.5.1 below, energy consumption and demand should not change from year to year. Therefore, if energy consumption and demand per utility meter or submeter for any month increases by five percent (5\%) or more of the Annual Scheduled Savings per meter from the Energy consumption and demand for the same month of the preceding year, after adjustment for changes to climactic conditions, then such increase shall be deemed to have resulted from a Material Change, except where such increase is due to equipment malfunction, faulty repair or other acts of negligence by Honeywell.
C.3.2.7 Guarantee Based on Agreement Only. Customer's request for proposal or qualifications, Honeywell's proposal and any other documents submitted by Honeywell to the Customer prior to negotiation of this Agreement are expressly excluded from and are not a part of this Agreement. The parties agree that although the Honeywell proposal may have contained scope items, guaranteed savings and M\&V options other than those stated in the Agreement, the final scope of work, Schedule of Guaranteed Savings, and M\&V Plan were developed jointly by the parties through negotiation. The Customer has chosen to purchase the scope of work set forth in Attachment A. The Customer accepts the Guaranteed Savings and agrees to the M\&V Plan set forth herein.

C. 4 Customer Guarantee Practices

C.4.1 Equipment Subject to these Provisions. M\&V Systems and Equipment affecting the Guaranteed Savings include:
(a) equipment provided as per Attachment A - Scope of Work;
(b) modifications made to existing equipment as outlined in Attachment A - Scope of Work;
(c) existing or new equipment not provided or modified under this Agreement, but materially affected by the work provided per Attachment A - Scope of Work and consuming energy or water via utility meters covered by the Agreement.
C.4.2 Hours and Practices. To achieve the Savings, Honeywell and Customer agree upon the Guaranteed Period operating parameters described in Exhibit(s) D-1 and D-2. The Customer agrees to operate, or cause to effect the operation of, the M\&V Systems and Equipment in such manner that is in accordance with these Guaranteed Period operating parameters.
C.4.3 Customer Maintenance and Replacement Responsibilities. During the term of this Support Services Agreement, for all equipment affecting the Guaranteed Savings, the Customer shall perform on-going maintenance and accomplish component replacement and equipment repairs in accordance with manufacturer's standards and practices and take all reasonable measures to insure the equipment is operating at full efficiency. Component replacement and equipment repairs must be accomplished in a timely fashion. Additionally, Customer shall insure such equipment is operated at all times in accordance with applicable manufacturer's specifications, Honeywell specifications, and the requirements contained herein. For all non-Honeywell maintenance actions, Customer shall document and make available to Honeywell maintenance dates and tasks accomplished, the start date and duration of all deficient equipment operation and the subsequent corrective action and/or repair dates. Customer shall replace any vandalized or any failed equipment or component no longer warranted by Honeywell or the manufacturer, with equipment or components of equal or greater efficiency value than installed by Honeywell, for the full Guarantee Term. Customer shall be responsible to investigate and correct any reported deficiencies not covered under this Support Services Agreement.
C.4.4 Facility Operational Changes. Except in the case of emergencies, Customer agrees it will not, without the consent of an authorized representative of Honeywell:
(a) make any significant deviations from the applicable Customer Guarantee Practices;
(b) put any system or item of equipment in a permanent "on" position, if the same would constitute a deviation from the applicable Customer Guarantee Practices; or
(c) assume manual control of any energy management system or item of equipment, if the same would constitute a deviation from the applicable Customer Guarantee Practices.
C.4.5 Customer Reporting Responsibilities. Customer shall report to Honeywell in writing within fifteen (15) days of the following changes or events:
(a) any additional energy source or change in existing energy source or supplier that the Customer may negotiate during the term of this Guarantee and/or,
(b) any material change in system or equipment status, including replacement of, addition to, or modification of existing energy and/or water consuming systems or equipment and/or,
(c) any long term temporary (equal to or greater than 10 days) or permanent changes in operating schedules and/or,
(d) any material changes in the payment schedule, such as due to refinancing or variable interest rate and/or,
(e) for any reason any Facility and/or utility meter covered under this Agreement is materially unoccupied, closed, or discontinued

Customer shall promptly notify Honeywell of any other activities known to Customer which could adversely impact the ability to realize the Guaranteed Savings.
C.4.5.1 Reported Material Changes. Customer shall deliver to Honeywell a written notice describing and explaining all actual or proposed Material Changes (as defined above in Section C.1) in a Facility or in the operations in a Facility and their anticipated effect on Energy or Operational Costs. Said notice must be delivered to Honeywell no less than seven (7) days before any actual or proposed Material Change occurs.
C.4.6 Customer Granted Access for Remote Diagnostics. Customer shall allow Honeywell to perform remote diagnostics on all equipment associated with the Guaranteed Savings for operational compliance with the manufacturer's specifications, and the requirements contained herein. Customer is responsible for implementation and costs for remote Honeywell access through Customer's firewall(s) to the controllers and front-end computer(s) for one (1) remote user designated by Honeywell using one or more of the following processes:

- TCP/IP Remote Access: A dedicated static IP address, installation and on-going maintenance and subscription and licensing fees for access to hardware and software and one (1) station license dedicated to the remote user, or
- Phone Lines: To be provided by customer for off-site monitoring, up to two (2) lines for each front end, as needed, one (1) line for each separate remote bus, as well as on-going maintenance of the lines.
If remote access is interrupted, at any time during the Guarantee Term, Honeywell reserves the right to suspend any reporting requirements until remote access has been restored.
C.4.7 Customer Provided Documentation. It will be the responsibility of the Customer to provide to an individual designated by Honeywell on a minimum monthly basis (unless noted otherwise):
(a) Verification that equipment installed to perform the ECMs has been properly maintained, including but limited to provision of maintenance records.
(b) Current status of the buildings (i.e., occupancy level and use, hours of operation, etc.).
(c) Records of customer-initiated changes in equipment setpoints, start/stop conditions, usage patterns.
(d) Records of customer-initiated changes in operation of mechanical systems, which may impact the ECMs.
(e) Records regarding addition or deletion of equipment or building structure, which may impact the ECMs or the building energy consumption.
(f) Copies of monthly utility bills and utility summary data on a monthly basis, and fuel storage tank levels, including without limitation fuel oil and biomass levels, in each case within two (2) weeks following the Customer's receipt thereof, and access to utility accounts through an authorization by the Customer to the Utility to allow the release of data to a Honeywell representative, together with access to relevant records relating to such utility costs.
(g) Access to any maintenance records, drawings, control system trend data, or other data reasonably deemed necessary by Honeywell to perform the M\&V Services.
C.4.8 Customer Governmental Unit Reporting Responsibilities. Customer is solely responsible for reports to be submitted to the Department of Commerce, Public Utilities/Services Commission, or any other governmental agency or governmental unit.
C.4.9 Customer Rebate and Ratchet Reset Responsibilities. It is understood that all energy rebates, refunds, and/or federal, state, or local tax credits (including, without limitation, any energy credits or investment tax credits) are the result of an agreement between Customer and the utility company and/or between the Customer and the Federal Government (Treasury Department). Honeywell will assist the Customer with the preparation of the required application documents but Honeywell assumes no responsibility for obtaining said rebates, refunds, and/or federal, state, or local tax credits (including, without limitation, any energy credits or investment tax credits). It is understood that said rebates, refunds, and/or federal, state, or local tax credits (including, without limitation, any energy credits or investment tax credits) are not included in the Guaranteed Savings. The Customer is responsible for procuring a ratchet reset from the local utility company, as applicable.
C.4.10 Customer Gas Supply Vendor Switchover Responsibilities. All work necessary to secure the proposed supplier rate, per Exhibit D-5, by switching from Gateway Energy to National Grid for Roosevelt Middle School, Washington-Rose ES, and Ulysses Byas ES, shall be the responsibility of the Customer to be in effect PRIOR to start of the Year 1 guarantee period. See subparagraph D.1.1.1 (C).

PART D. SCHEDULE OF GUARANTEED SAVINGS

D.1. Schedule of Guaranteed Savings

The Guaranteed Savings over the Guaranteed Term is equal to or greater than $\$ 23,316,343$. The Guaranteed Savings and the Annual Scheduled Savings are set forth in the table below (such table, the "Schedule of Guaranteed Savings"):

YEAR	ENERGY	OPERATIONAL		TOTAL
1	\$ 1,053,939	\$	63,143	\$ 1,117,082
2	\$ 1,071,749	\$	64,406	\$ 1,136,155
3	\$ 1,089,867	\$	65,694	\$ 1,155,561
4	\$ 1,108,298	\$	67,008	\$ 1,175,306
5	\$ 1,127,047	\$	68,348	\$ 1,195,395
6	\$ 1,146,120	\$	69,715	\$ 1,215,835
7	\$ 1,165,524	\$	71,109	\$ 1,236,633
8	\$ 1,185,262	\$	72,531	\$ 1,257,793
9	\$ 1,205,343	\$	73,982	\$ 1,279,325
10	\$ 1,225,772	\$	75,462	\$ 1,301,234
11	\$ 1,246,555	\$	76,971	\$ 1,323,526
12	\$ 1,267,696	\$	78,510	\$ 1,346,206
13	\$ 1,289,204	\$	80,080	\$ 1,369,284
14	\$ 1,311,085	\$	81,682	\$ 1,392,767
15	\$ 1,333,346	\$	83,316	\$ 1,416,662
16	\$ 1,355,993	\$	84,982	\$ 1,440,975
17	\$ 1,379,033	\$	86,682	\$ 1,465,715
18	\$ 1,402,473	\$	88,416	\$ 1,490,889
TOTALS	\$ 21,964,306	\$	1,352,037	\$ 23,316,343

Provided however, that, notwithstanding the above, in no event shall the Guaranteed Savings exceed the total Retrofit Costs over the Guaranteed Term. For sake of clarity, actual or pro forma budget neutral or positive cash flows are not guaranteed.
D.1. 1 Energy Savings. The first year amount of Savings for Energy Costs is the sum of the below listed ECMs. Actual Savings may be lower than as set forth in the Schedule of Guaranteed Savings because of an absolute increase in Energy use due to the implementation of measures to increase environmental comfort as directed by the Customer, and other baseline adjustments (see Section D.2). The Guaranteed Savings are less than the projected Savings, represented in Exhibit D-5. Cost Avoidance is based on the Customer Guarantee Practices set forth in Section C.4.

$\begin{aligned} & \text { Att A } \\ & \text { No. }{ }^{[a]} \end{aligned}$	ECM Description	Electric Year 1	Nat Gas Year 1	Propane Year 1	$\begin{gathered} \text { Fuel Oil } \\ \text { Year } 1 \end{gathered}$	Water Year 1	Total Year 1
1	LED Lighting and Lighting Controls Upgrade	\$ 192,219	\$ (4,928)	\$0	\$0	\$0	\$ 187,291
2	Boiler Plant Upgrades	\$0	\$ 40,272	\$0	\$0	\$0	\$ 40,272
3	DHW Heater Upgrades	\$0	\$ 789	\$0	\$0	\$0	\$ 789
4	Mechanical Upgrades	\$ 3,590	\$0	\$0	\$0	\$0	\$ 3,590
5	Install De-Stratification Fans	\$ (573)	\$ 3,944	\$0	\$0	\$0	\$ 3,371
6	Building Management System Upgrades	\$ 69,731	\$ 85,995	\$0	\$0	\$0	\$ 155,726
7	DHW Heater Upgrades	\$ 1,293	\$ 6,242	\$0	\$0	\$0	\$ 7,535
8	Pipe Insulation	\$0	\$ 7,738	\$0	\$0	\$0	\$ 7,738
9	Install Walk-In Freezer/Coolers Controllers	\$ 6,796	\$0	\$0	\$0	\$0	\$ 6,796
10	Install Solar PV System	\$ 640,831	\$0	\$0	\$0	\$0	\$ 640,831
	Totals	\$ 913,887	\$ 140,052	\$ 0	\$ 0	\$ 0	\$1,053,939

[a] Att A: Attachment A - Scope of Work.

Customer agrees that the baseline for the unit cost of Energy will be adjusted each year of the Guarantee Term. This annually adjusted value of Energy unit cost is stipulated as the new baseline in each succeeding year. Customer agrees that Baseline adjustment is stipulated to be an escalation of 2% per year for the unit cost of electric utilities, 2% per year for gas utilities, and 2% per year for water or sewer utilities, used in the determination of Cost Avoidance each year.

D.1.1.1 Calculating Cost Avoidance

(a) Customer agrees that the baseline for the unit cost of Utilities will be adjusted each year of the Guarantee Term to reflect a stipulated escalation of 2% per year for the unit cost of electric, natural gas, and fuel oil. This annually adjusted value of Energy unit cost is stipulated as the new baseline in each succeeding year and may be used in the determination of Cost Avoidance each year in accordance with section D.1.1.1(b).
(b) The calculation of Cost Avoidance is based upon the utility rate paid during the Guarantee Year, or the Baseline Period utility rate plus escalation (represented in Exhibit D-3 Contractual Baseline Conditions, Utility Use, Utility Unit Costs), whichever produces the highest Cost Avoidance and/or as defined below:
(i) The Guarantee Year current rate for Option A will be the annual average determined from 12 months of utility billing data in that Guarantee Year. Customer will provide the utility data per Section C.4.7 and if such data is not provided, the baseline utility rate plus annual escalation (see paragraph D.1.1.1 (a)) shall be used.
(ii) Option A analysis for all ECMs will use $\$ / \mathrm{kW}$ and unblended $\$ / \mathrm{kWh}$ for electric to monetize demand and energy savings. For buildings with thermal savings for ECM 1 Lighting (Heating Penalty) only, cost avoidance will be calculated using the baseline rate in Exhibit D-3 Contractual Baseline Conditions, Utility Use, Utility Unit Costs, escalated as indicated in section D.1.1.
(iii) Option C analysis utilizes Metrix ${ }^{\mathrm{TM}}$, an independent 3rd party industry-standard utility accounting and normalization software platform. The energy and cost avoidance for Option C analysis using Metrix or otherwise is determined on a monthly basis. Energy Avoidance is monetized by comparing the blended unit cost from each month's utility bill with the baseline contractual rate, escalated per section D.1.1.1 (a), to determine the rate to use for calculation of monthly cost avoidance per section D.1.1.1 (b).
(c) Natural gas supplier switch to National Grid: as per paragraph C.4.10, all work necessary to secure the proposed supplier rate, per Exhibit D-5, by switching from Gateway Energy to National Grid for Roosevelt Middle School, Washington-Rose ES, and Ulysses Byas ES, shall be the responsibility of the Customer to be in effect PRIOR to start of the Year 1 guarantee period. If supplier switchover is not completed PRIOR to start of the Year 1 guarantee period, then the proposed unit costs as shown in Exhibit D-5-2 for Washington-Rose ES and Roosevelt Middle School AND in Exhibit D-5-6 for Ulysses Byas ES will be used to monetize the savings.
(d) Cost Avoidance may also include, but is not limited to, savings from demand charges, power factor correction, taxes, ratchet charges, rate changes and other utility tariff charges that are reduced as a result of Honeywell involvement. In case the Customer does not procure any ratchet reset, rate change or other utility tariff charge reduction, or in the event that such ratchet, rate or tariff changes before the Guarantee Period ends, Cost Avoidance nonetheless will be calculated as if the ratchet, rate or tariff has been reset at the end of the installation of demandreducing ECMs, or continues, as applicable.
(e) In the event, the current Guarantee Year utility tariff is significantly changed in structure from that which existed during the Baseline Period, including, but not limited to, the addition or deletion of measured or billed demand structures, Time of Use, Seasonal or Block \& Tail billing structures, the Customer will not unreasonably withhold acceptance to abandon the new tariff (i.e., Current Rate) and will only use the baseline plus escalator as described in section D.1.1.1 (a).
(f) The constants and/or stipulated values defined in the Exhibits, or as defined herein, are mutually agreed to by the Customer to be reasonable and may be used in the determination of Cost Avoidance.

D.1.1.2 Acceptance of Measurement \& Verification Methods

Upon contract execution, Customer accepts the standard methods that Honeywell uses to conduct Retrofit Isolation Method (RIM) and Option C Measurement \& Verification (M\&V), as well as cost avoidance calculations, as described herein and inferenced by or included in the energy calculations and regression models attached hereto. Customer has the right and may to hire a consultant to review the calculations and comment before the contract is signed and the
price accepted. Any future use of a consultant to review M\&V methods and work product is at Customer's discretion and expense. Customer agrees that any such consultant's review shall be limited to the M\&V methods as selected by the Customer prior to contract execution and as detailed and defined in this Agreement.
D.1.2 Operational Cost Savings. The first-year amount of Savings for Operational Costs is the sum of the below listed ECMs. The Savings are based on the Customer Guarantee Practices set forth in Section C.4. The Operational Costs Savings described below and identified in Section D. 1 are deemed satisfied upon execution of the Main Agreement. The Customer acknowledges and agrees that, if it did not enter into this Agreement, it would have to take future steps to achieve the same ends as does the Work included in Attachment A, and that, in doing so, it would incur Operational Costs of at least the amount per year over the Guarantee Term as presented below and in the Schedule of Guaranteed Savings. The Customer agrees that, by entering into this Agreement, it will avoid future Operational Costs in at least these amounts.

Further, the Customer acknowledges that Operational Costs Savings categorized as capital cost avoidance are part of, or are causally connected to the Work specified in Attachment A (i.e., the ECMs being implemented), and are documented by industry standard engineering methodologies acceptable to the Customer.

Customer agrees that the Baseline for the unit cost of Operational Costs will be adjusted each year of the Guarantee Term. This annually adjusted value of operational unit costs is stipulated as the new baseline in each succeeding year. Customer agrees that the Baseline adjustment is stipulated to be an escalation of 2\% per year for Operational Costs used in the determination of Operational Costs Savings each year.

The Operational Costs Savings were identified, reviewed, and agreed to by a team of Customer's representatives including Gary Gentles - Assistant Superintendent for Business \& Operations and Warren Young - Director of Facilities.

OSD $\#$	Operational Savings Description (OSD)	Att. A Ref.	Cost Avoidance Category (O\&M, Capital,)	$\mathbf{1}^{\text {st }}$ Year Cost Avoidance
1	LED Lighting and Lighting Controls Upgrade	1	O\&M	$\$ 20,057$
2	Boiler Plant Upgrades	2	O\&M	$\$ 5,000$
3	Mechanical Upgrades	4	O\&M	$\$ 5,000$
4	Building Management System Upgrades	5	O\&M	$\$ 33,086$
			Total	$\$ 63, \mathbf{1 4 3}$

[a] O\&M: operations and maintenance.

D. 2 Baseline Operations and Adjustments

D.2.1 "Baseline Operating Parameters" are the Facility(ies) and system(s) operations measured and/or observed before commencement of the Work. Baseline Operating Parameters are stipulated in, and incorporated herein, as Exhibit D-1. See Energy Savings Calculations, attached hereto and incorporated herein as Exhibit D-5 for further information regarding stipulated Baseline Operating Parameters.

The data summarized will be used in the calculation of the Baseline energy consumption and/or demand and for calculating Baseline adjustments for changes in Facility operation that occur during the Guarantee Term. Honeywell and Customer agree that the Baseline Operating Parameters specified in this section are representative of equipment operating characteristics during the Baseline Period specified in this Agreement. The following data was collected with the assistance of Warren Young - Director of Facilities,

The Baseline Period is defined as $\underline{07 / 2021}$ to $\underline{06 / 2022}$.

The Baseline consists of the Baseline conditions and Baseline Operating Parameters collected from the Baseline Period and modified by Baseline adjustments, as necessary, as defined herein and by the Exhibits.

D.2.2 Pre-Retrofit Baseline Adjustments: Reserved

D.2.3 Post-Retrofit Baseline Adjustments: Reserved

D. 3 Guarantee Term Operations

D.3.1 "Guarantee Term Operating Parameters" are the Facility(ies) and system(s) operations as measured and/or observed after completion of Work. The data summarized will be used in the calculation of the post-retrofit Energy consumption and/or demand. Honeywell and Customer agree that the Guarantee Term Operating Parameters specified in this section are representative of equipment operating characteristics during the Guarantee Term specified in this Agreement. And, further, that they are agreed to be reasonable and may be used in the calculation of the Cost Avoidance, as if the site is actually operating per the Guarantee Term Operating Parameters outlined in this section.

Guarantee Term Operating Parameters are stipulated in Guarantee Period Operating Parameters attached hereto and incorporated herein as Exhibit D-2.
D.3.2 Operational Cost Avoidance: The following parameters, methodologies, and/or calculations were used in determining the Operational Costs and/or Cost Avoidance due to the Retrofit and Support Services implementation and are agreed to be reasonable and may be used in the calculation of Savings.

Operational Costs Savings methodology and/or calculation details are attached hereto and are incorporated herein as the exhibits outlined in the following table.

OSD\#	Operational Savings Description	Cost Avoidance Methodology	Exhibit
1	LED Lighting and Lighting Controls Upgrade	The new LED lighting fixtures and retrofit kits being installed have a longer material life than the standard existing equipment. This translates into a longer Mean Time Between Failures (MTBF) thus resulting in a longer timeframe between equipment replacement periods.	D-6
2	Boiler Plant Upgrades	Reduction in current repair and preventive maintenance spend on the existing equipment.	D-6
3	Mechanical Upgrades	Reduction in current repair spend on the existing equipment.	D-6
4	Building Management System Upgrades	Reduction in current repair spend on the existing District-wide BMS, elimination of JACE license upgrades with transition from JAVA to HTML, and a reduction in staff OT labor with comprehensive remote monitoring capabilities.	D-6

[a] O\&M: operations and maintenance.

D. 4 Other Energy and Operational Savings Measures: Reserved.

ATTACHMENT E

 PAYMENT SCHEDULE
1. The following payment schedule has been established for the Work:

1.1 The payment schedule reflected below has been established for the Work. Payment shall be made net thirty (30) days of the invoice date. If issues surrounding lack of payment are not remedied within ten (10) business days, HONEYWELL may suspend all work until payment is made.

Total payments are: $\$ 23,350,000$
Honeywell's price is based upon the contract being signed and the financing being secured by June 30, 2023. Should any of these events be delayed beyond that date Honeywell reserves the right to adjust its price subject to Customer's written approval. Any change to the contract price shall be documented by a change order signed by both parties.

1.2 Progress Payments

	Percentage Due		Amount Due
Initial Payment upon Contract			
Signature and securing of Financing:	50%		$\$ 11,675,000$
Monthly Progress Payments:	50%		$\$ 11,675,000$
Total Payments:		$\mathbf{\$ 2 3 , 3 5 0 , 0 0 0}$	

The entire contract price less the initial payment will be billed monthly as a percentage complete by ECM using the approved Schedule of Values established through the NYSED review process. HONEYWELL shall be paid the amount of each monthly progress payment due HONEYWELL less five percent (5\%) retainage (no retainage shall be held on the initial payment). Following the end of each month, during the construction period of the Project, HONEYWELL will provide to CUSTOMER an application for payment using an AIA Document G702 or equivalent form, together with a list in sufficient detail to reasonably identify the work performed, ECMs or portions thereof installed during that month, and all applicable payroll certifications in accordance with Article 8 of the NYS Labor Law. Within thirty (30) days after the invoice has been approved by ECG and CUSTOMER, CUSTOMER shall pay or cause to be paid to HONEYWELL the undisputed amount due under such invoice. If issues surrounding lack of payment of an undisputed amount are not remedied within ten (10) business days, HONEYWELL may suspend all Work until payment is made. HONEYWELL shall invoice an ECM's retainage amount after the date of the Substantial Completion Certificate for that particular ECM, and CUSTOMER shall pay or cause to be paid to HONEYWELL said amount within thirty (30) days after receipt of said invoice.

ENGINEER OF RECORD. The Customer has identified ECG Engineering, P.C., as the certified Engineer of Record (the "Engineer") to provide architectural/engineering services in connection with the Work to be performed by Honeywell. The fees and total compensation for such Architectural/Engineering Services shall be $\$ 1,111,905$ and shall be paid by Honeywell to the Engineer in accordance with the following schedule:
30% upon Customer signing contract with Honeywell
30% upon submittal of plans and specifications to NYSED
30% upon NYSED approval
10% upon substantial completion

The above increments shall be paid by Honeywell to the Engineer within thirty (30) days of the stated milestone. Invoices that have not been paid within forty-five (45) days of receipt of such invoice shall be subject to interest at a rate of 18% per annum.

2. The following payment schedule has been established for Support Services:

2.1 The first invoice will be issued upon completion of the Work and prior to commencement of Support Services and CUSTOMER shall pay or cause to be paid to HONEYWELL the price for the Services as specified in Attachment D.

This Page Intentionally Left Blank

ATTACHMENT J

PROJECT ACCEPTANCE PROCEDURE

As portions of the Project near completion, the Honeywell Project Manager will start the project close-out process.
The following Exhibits and Tables are attached hereto and made a part of the Agreement:
Exhibit J-1 Schedule of Substantial Completion Acceptance
Exhibit J-2 Certificate of Substantial Completion
Exhibit J-3 Final Project Acceptance Certificate

A. 1 Substantial Completion Procedure

The Honeywell Project Manager shall use the Scope-of-Work (SOW) listed in Attachment A as the basis for the closeout process and shall demonstrate to the Customer's Representative that each separate item of the SOW is substantially complete. The sign off process will be by portion of the Scope of Work, by building/site/Equipment Unit or by individual Energy Conservation Measure (ECM) as listed in Exhibit J-1 below. After each portion of the Scope of Work has been demonstrated and a "Punch List" detailing minor deficiencies, if any, is generated, the Customer's Representative shall execute the Exhibit J-2 Certificate of Substantial Completion (CSC) to acknowledge substantial completion and Honeywell will complete the "Punch List" within two weeks. Exhibit J-1 based on the Customer's signature dates will track the progress towards Final Project Acceptance. Warranty shall start in accordance with the terms of the Agreement.

Exhibit J-1

SCHEDULE OF SUBSTANTIAL COMPLETION

Schedule of Substantial Completion: The acceptance process will be performed according to the following schedule.

Schedule of Certificates of Substantial Completion (CSC)		
Scope of Work Segmentation	CSC Acceptance By:	Punchlist Acceptance By:
ECM 1: LED Lighting and Lighting Controls Upgrade		
ECM 2: Boiler Plant Upgrades		
ECM 3: DHW Heater Upgrades		
ECM 4: Mechanical Upgrades		
ECM 5: Install De-Stratification Fans		
ECM 6: Building Management System Upgrades		
ECM 7: Building Envelope Improvements		
ECM 8: Pipe Insulation		
ECM 9: Install Walk In Freezer / Cooler Controllers		
ECM 10: Install Solar PV Systems		

A. 2 Final Project Acceptance Procedure

Once Exhibit J-1 and all punch lists are complete the Honeywell Project Manager and Customer shall use Exhibit J-3 to signify Final Project Acceptance.

Exhibit J-2

CERTIFICATE OF SUBSTANTIAL COMPLETION

Project Name: \qquad

Building/Site/Equipment Unit or individual Energy Conservation Measure (ECM):
To: Honeywell International Inc.
Reference is made to the above listed Agreement between the undersigned and Honeywell International Inc. and to the Scope of Work as defined in Attachment A herein. In connection therewith, we confirm to you the following:

1. The Building/Site/Equipment Unit or individual Energy Conservation Measure (ECM) referenced above and also listed in Attachment A of the Agreement has been demonstrated to the satisfaction of the Customer's Representative as being substantially complete.
2. The Punch List [circle which applies]:
(a) has been developed by the parties and delivered to Honeywell and the deficiencies noted therein will be corrected within 2 weeks of the date hereon; or
(b) has not been developed by the parties and delivered to Honeywell but will be developed and delivered on or before _, 202_ after which the deficiencies noted therein will be corrected within 2 weeks of the date thereon.
3. All of the Work has been delivered to and received by the undersigned and that said Work has been examined and /or tested and is in good operating order and condition and is in all respects satisfactory to the undersigned and as represented, and that said Work has been accepted by the undersigned and complies with all terms of the Agreement. Consequently, you are hereby authorized to invoice for payment, as defined in Attachment E, Payment Schedule.
4. Warranty shall start in accordance with the terms of the Agreement.
5. If Customer will be self-performing maintenance on equipment associated with this ECM, then as of the date of Customer signature the Customer is responsible for maintenance.
6. If Honeywell will be performing maintenance on equipment associated with this ECM, then Honeywell will start the Support Services Agreement on the Support Services Effective Date as defined in accordance with Attachment D.

Customer Name: \qquad
By:
(Authorized Signature)
(Printed Name and Title)
(Date)
(Authorized Signature)
(Printed Name and Title)
(Date)

Exhibit J-3

FINAL PROJECT ACCEPTANCE CERTIFICATE

Project Name: \qquad

Scope-of-Work (SOW): \qquad
To: Honeywell International Inc.
Reference is made to the above listed Agreement between the undersigned and Honeywell International Inc. and to the Scope of Work as defined in Attachment A herein. In connection therewith, we confirm to you the following:

1. The entirety of the Scope of Work (SOW) referenced above and set forth in Attachment A of the Agreement has been demonstrated to the satisfaction of the Customer's Representative as being accepted as is evidenced by Customer's signature on Certificates of Substantial Completion for the entirety of the Work.
2. The Punch List(s) has been completed.
3. You are hereby authorized to invoice for Final Payment, as defined in Attachment E, Payment Schedule.
4. The date of Customer's signature below shall be known as the date of Final Project Acceptance.

Customer Name:

By: \qquad
(Authorized Signature)
(Printed Name and Title)
(Date)

EXHIBIT D-1 \& D-2
 BASELINE OPERATING PARAMETERS \& GUARANTEE PERIOD OPERATING PARAMETERS

Roosevelt High School

The existing HVAC system operating schedule is generally from 6:00am to 9:00pm Monday through Friday. During the guarantee period, the HVAC system operating schedule shall be $6: 00 \mathrm{am}$ to $6: 00 \mathrm{pm}$ Monday through Friday, with unoccupied operation during all other hours.

The existing occupied heating setpoint is $71^{\circ} \mathrm{F}$ and the unoccupied heating setpoint is $60^{\circ} \mathrm{F}$. During the guarantee period, the occupied heating setpoint shall be $68^{\circ} \mathrm{F}$ and the unoccupied heating setpoint shall be $55^{\circ} \mathrm{F}$.

The existing Cooling setpoints are estimated at $73^{\circ} \mathrm{F}$ occupied and $80^{\circ} \mathrm{F}$ unoccupied. During the guarantee period, the occupied cooling setpoint shall be $76^{\circ} \mathrm{F}$ and the unoccupied cooling setpoint shall be $85^{\circ} \mathrm{F}$.

Existing schedules and setpoints are based on detailed review of Building Management Systems/thermostats and interviews with staff.

Proposed schedules are based on information provided by the Facilities Department.

WEEKDAY		WEEKEND	
Existing HVAC Start Time	Proposed HVAC Start Time	Existing HVAC Start Time	Proposed HVAC Start Time
6:00am	$6: 00 \mathrm{am}$	Unoccupied	Unoccupied
Existing HVAC Stop Time	Proposed HVAC Stop Time	Existing HVAC Stop Time	Proposed HVAC Stop Time
$9: 00 \mathrm{pm}$	$6: 00 \mathrm{pm}$	Unoccupied	Unoccupied

HEATING		COOLING	
Existing Occupied Setpoint	Proposed Occupied Setpoint	Existing Occupied Setpoint	Proposed Occupied Setpoint
$71^{\circ} \mathrm{F}$	$68^{\circ} \mathrm{F}$	$73^{\circ} \mathrm{F}$	$76^{\circ} \mathrm{F}$
Existing Unoccupied Setpoint	Proposed Unoccupied Setpoint	Existing Unoccupied Setpoint	Proposed Unoccupied Setpoint
$60^{\circ} \mathrm{F}$	$55^{\circ} \mathrm{F}$	$80^{\circ} \mathrm{F}$	$85^{\circ} \mathrm{F}$

Notes:

1) All HVAC system run times allow for a minimum of one (1) hour warm up period prior to occupant arrival.
2) Evening and weekend events in isolated areas (i.e. gymnasiums, cafeterias, auditoriums, etc.) shall be separately scheduled for occupancy wherever possible to prevent having to set the entire building into occupied mode.
3) Guaranteed contractual savings are based on the proposed schedules and setpoints listed in the tables above.

EXHIBIT D-1 \& D-2
 BASELINE OPERATING PARAMETERS \& GUARANTEE PERIOD OPERATING PARAMETERS

Roosevelt Middle School

The existing HVAC system operating schedule is generally from 3:00am to 12:00am Monday through Friday. During the guarantee period, the HVAC system operating schedule shall be 6:00am to $6: 00 \mathrm{pm}$ Monday through Friday, with unoccupied operation during all other hours.

The existing occupied heating setpoint is $72^{\circ} \mathrm{F}$ and the unoccupied heating setpoint is $60^{\circ} \mathrm{F}$. During the guarantee period, the occupied heating setpoint shall be $68^{\circ} \mathrm{F}$ and the unoccupied heating setpoint shall be $55^{\circ} \mathrm{F}$.

The existing Cooling setpoints are estimated at $74^{\circ} \mathrm{F}$ occupied and $80^{\circ} \mathrm{F}$ unoccupied. During the guarantee period, the occupied cooling setpoint shall be $76^{\circ} \mathrm{F}$ and the unoccupied cooling setpoint shall be $85^{\circ} \mathrm{F}$.

Existing schedules and setpoints are based on detailed review of Building Management Systems/thermostats and interviews with staff.

Proposed schedules are based on information provided by the Facilities Department.

WEEKDAY		WEEKEND	
Existing HVAC Start Time	Proposed HVAC Start Time	Existing HVAC Start Time	Proposed HVAC Start Time
$3: 00 \mathrm{am}$	$6: 00 \mathrm{am}$	Unoccupied	Unoccupied
Existing HVAC Stop Time	Proposed HVAC Stop Time	Existing HVAC Stop Time	Proposed HVAC Stop Time
$12: 00 \mathrm{am}$	$6: 00 \mathrm{pm}$	Unoccupied	Unoccupied

HEATING		COOLING	
Existing Occupied Setpoint	Proposed Occupied Setpoint	Existing Occupied Setpoint	Proposed Occupied Setpoint
$72^{\circ} \mathrm{F}$	$68^{\circ} \mathrm{F}$	$74^{\circ} \mathrm{F}$	$76^{\circ} \mathrm{F}$
Existing Unoccupied Setpoint	Proposed Unoccupied Setpoint	Existing Unoccupied Setpoint	Proposed Unoccupied Setpoint
$60^{\circ} \mathrm{F}$	$55^{\circ} \mathrm{F}$	$80^{\circ} \mathrm{F}$	$85^{\circ} \mathrm{F}$

Notes:

1) All HVAC system run times allow for a minimum of one (1) hour warm up period prior to occupant arrival.
2) Evening and weekend events in isolated areas (i.e. gymnasiums, cafeterias, auditoriums, etc.) shall be separately scheduled for occupancy wherever possible to prevent having to set the entire building into occupied mode.
3) Guaranteed contractual savings are based on the proposed schedules and setpoints listed in the tables above.

EXHIBIT D-1 \& D-2
 BASELINE OPERATING PARAMETERS \& GUARANTEE PERIOD OPERATING PARAMETERS

Centennial Ave Elementary School

The existing HVAC system operating schedule is generally from 5:30am to 9:30pm Monday through Friday. During the guarantee period, the HVAC system operating schedule shall be $6: 00 \mathrm{am}$ to $4: 00 \mathrm{pm}$ Monday through Friday, with unoccupied operation during all other hours.

The existing occupied heating setpoint is $71^{\circ} \mathrm{F}$ and the unoccupied heating setpoint is $60^{\circ} \mathrm{F}$. During the guarantee period, the occupied heating setpoint shall be $68^{\circ} \mathrm{F}$ and the unoccupied heating setpoint shall be $55^{\circ} \mathrm{F}$.

The existing Cooling setpoints are estimated at $72^{\circ} \mathrm{F}$ occupied and $80^{\circ} \mathrm{F}$ unoccupied. During the guarantee period, the occupied cooling setpoint shall be $76^{\circ} \mathrm{F}$ and the unoccupied cooling setpoint shall be $85^{\circ} \mathrm{F}$.

Existing schedules and setpoints are based on detailed review of Building Management Systems/thermostats and interviews with staff.

Proposed schedules are based on information provided by the Facilities Department.

WEEKDAY		WEEKEND	
Existing HVAC Start Time	Proposed HVAC Start Time	Existing HVAC Start Time	Proposed HVAC Start Time
$5: 30 \mathrm{am}$	$6: 00 \mathrm{am}$	Unoccupied	Unoccupied
Existing HVAC Stop Time	Proposed HVAC Stop Time	Existing HVAC Stop Time	Proposed HVAC Stop Time
$9: 30 \mathrm{pm}$	$4: 00 \mathrm{pm}$	Unoccupied	Unoccupied

HEATING		COOLING	
Existing Occupied Setpoint	Proposed Occupied Setpoint	Existing Occupied Setpoint	Proposed Occupied Setpoint
$71^{\circ} \mathrm{F}$	$68^{\circ} \mathrm{F}$	$72^{\circ} \mathrm{F}$	$76^{\circ} \mathrm{F}$
Existing Unoccupied Setpoint	Proposed Unoccupied Setpoint	Existing Unoccupied Setpoint	Proposed Unoccupied Setpoint
$60^{\circ} \mathrm{F}$	$55^{\circ} \mathrm{F}$	$80^{\circ} \mathrm{F}$	$85^{\circ} \mathrm{F}$

Notes:

1) All HVAC system run times allow for a minimum of one (1) hour warm up period prior to occupant arrival.
2) Evening and weekend events in isolated areas (i.e. gymnasiums, cafeterias, auditoriums, etc.) shall be separately scheduled for occupancy wherever possible to prevent having to set the entire building into occupied mode.
3) Guaranteed contractual savings are based on the proposed schedules and setpoints listed in the tables above.

EXHIBIT D-1 \& D-2
 BASELINE OPERATING PARAMETERS \& GUARANTEE PERIOD OPERATING PARAMETERS

Ulysses Byas Elementary School

The existing HVAC system operating schedule is generally from 5:30am to 7:00pm Monday through Friday. During the guarantee period, the HVAC system operating schedule shall be $6: 00 \mathrm{am}$ to $4: 00 \mathrm{pm}$ Monday through Friday, with unoccupied operation during all other hours.

The existing occupied heating setpoint is $71^{\circ} \mathrm{F}$ and the unoccupied heating setpoint is $60^{\circ} \mathrm{F}$. During the guarantee period, the occupied heating setpoint shall be $68^{\circ} \mathrm{F}$ and the unoccupied heating setpoint shall be $55^{\circ} \mathrm{F}$.

The existing Cooling setpoints are estimated at $74^{\circ} \mathrm{F}$ occupied and $80^{\circ} \mathrm{F}$ unoccupied. During the guarantee period, the occupied cooling setpoint shall be $76^{\circ} \mathrm{F}$ and the unoccupied cooling setpoint shall be $85^{\circ} \mathrm{F}$.

Existing schedules and setpoints are based on detailed review of Building Management Systems/thermostats and interviews with staff.

Proposed schedules are based on information provided by the Facilities Department.

WEEKDAY		WEEKEND	
Existing HVAC Start Time	Proposed HVAC Start Time	Existing HVAC Start Time	Proposed HVAC Start Time
$5: 30 \mathrm{am}$	$6: 00 \mathrm{am}$	Unoccupied	Unoccupied
Existing HVAC Stop Time	Proposed HVAC Stop Time	Existing HVAC Stop Time	Proposed HVAC Stop Time
$7: 00 \mathrm{pm}$	$4: 00 \mathrm{pm}$	Unoccupied	Unoccupied

HEATING		COOLING	
Existing Occupied Setpoint	Proposed Occupied Setpoint	Existing Occupied Setpoint	Proposed Occupied Setpoint
$71^{\circ} \mathrm{F}$	$68^{\circ} \mathrm{F}$	$74^{\circ} \mathrm{F}$	$76^{\circ} \mathrm{F}$
Existing Unoccupied Setpoint	Proposed Unoccupied Setpoint	Existing Unoccupied Setpoint	Proposed Unoccupied Setpoint
$60^{\circ} \mathrm{F}$	$55^{\circ} \mathrm{F}$	$80^{\circ} \mathrm{F}$	$85^{\circ} \mathrm{F}$

Notes:

1) All HVAC system run times allow for a minimum of one (1) hour warm up period prior to occupant arrival.
2) Evening and weekend events in isolated areas (i.e. gymnasiums, cafeterias, auditoriums, etc.) shall be separately scheduled for occupancy wherever possible to prevent having to set the entire building into occupied mode.
3) Guaranteed contractual savings are based on the proposed schedules and setpoints listed in the tables above.

EXHIBIT D-1 \& D-2
 BASELINE OPERATING PARAMETERS \& GUARANTEE PERIOD OPERATING PARAMETERS

Washington-Rose Elementary School

The existing HVAC system operating schedule is generally from 12:00am to 12:00am Sunday through Saturday. During the guarantee period, the HVAC system operating schedule shall be 6:00am to 4:00pm Monday through Friday, with unoccupied operation during all other hours.

The existing occupied heating setpoint is $71^{\circ} \mathrm{F}$ and the unoccupied heating setpoint is $60^{\circ} \mathrm{F}$. During the guarantee period, the occupied heating setpoint shall be $68^{\circ} \mathrm{F}$ and the unoccupied heating setpoint shall be $55^{\circ} \mathrm{F}$.

The existing Cooling setpoints are estimated at $74^{\circ} \mathrm{F}$ occupied and $80^{\circ} \mathrm{F}$ unoccupied. During the guarantee period, the occupied cooling setpoint shall be $76^{\circ} \mathrm{F}$ and the unoccupied cooling setpoint shall be $85^{\circ} \mathrm{F}$.

Existing schedules and setpoints are based on detailed review of Building Management Systems/thermostats and interviews with staff.

Proposed schedules are based on information provided by the Facilities Department.

WEEKDAY		WEEKEND	
Existing HVAC Start Time	Proposed HVAC Start Time	Existing HVAC Start Time	Proposed HVAC Start Time
$12: 00 \mathrm{am}$	$6: 00 \mathrm{am}$	$12: 00 \mathrm{am}$	Unoccupied
Existing HVAC Stop Time	Proposed HVAC Stop Time	Existing HVAC Stop Time	Proposed HVAC Stop Time
$12: 00 \mathrm{am}$	$4: 00 \mathrm{pm}$	$12: 00 \mathrm{am}$	Unoccupied

HEATING		COOLING	
Existing Occupied Setpoint	Proposed Occupied Setpoint	Existing Occupied Setpoint	Proposed Occupied Setpoint
$71^{\circ} \mathrm{F}$	$68^{\circ} \mathrm{F}$	$74^{\circ} \mathrm{F}$	$76^{\circ} \mathrm{F}$
Existing Unoccupied Setpoint	Proposed Unoccupied Setpoint	Existing Unoccupied Setpoint	Proposed Unoccupied Setpoint
$60^{\circ} \mathrm{F}$	$55^{\circ} \mathrm{F}$	$80^{\circ} \mathrm{F}$	$85^{\circ} \mathrm{F}$

Notes:

1) All HVAC system run times allow for a minimum of one (1) hour warm up period prior to occupant arrival.
2) Evening and weekend events in isolated areas (i.e. gymnasiums, cafeterias, auditoriums, etc.) shall be separately scheduled for occupancy wherever possible to prevent having to set the entire building into occupied mode.
3) Guaranteed contractual savings are based on the proposed schedules and setpoints listed in the tables above.

Utility Summary
July 2021 through June 2022
FY 21/22

Building	Square Footage	Electric												Fuel Designation	Natural Gas					Total Thermal						Total Energy			
		Total Cost		Total kWh	Demand Cost		Fixed Costs		Total kW Demand	Demand Months	\$/kw	\$/kwh		Main Heating Utility	Total Cost	Fixed Costs	$\begin{gathered} \hline \text { Total } \\ \text { Therms } \end{gathered}$	\$/Therm		Total Cost	MMBtu/ Yr Total	\$/MM		$\begin{gathered} \text { Sper } \\ \text { square ft } \end{gathered}$		\$/5	$\underset{\mathrm{ft}}{\mathrm{kB4} / \mathrm{sq}}$	Total Cost	
Centennial Avenue Elementary School	101,940	\$	229,108	1,051,200	\$	59,557	\$	13,431	3,362	11	\$ 17.71	\$	0.149	Natural Gas	36,802	491	33,673	\$	1.08	\$ 36,802	3,367	\$	10.93	5	0.36	\$2.61	68.23	\$	265,910
Washington-Rose Elementary School	92,000	\$	235,989	1,139,200	\$	54,943	\$	13,074	2,892	11	\$ 19.00	\$	0.147	Natural Gas	\$ 71,757	943	53,668	\$	1.32	\$ 71,757	5,367	\$	13.37	\$	0.78	\$3.35	100.60	\$	307,745
Ulysses Byas Elementary School	93,000	\$	187,479	861,920	\$	50,242	\$	11,774	2,756	11	\$ 18.23	\$	146	Natural Gas	\$ 70,676	486	54,585	\$	1.29	\$ 70,676	5,45	\$	12.9	s	0.76	\$2.78	90.3	\$	258,155
Roosevelt Middle School	162,000	\$	486,905	2,495,040	\$	99,846	\$	20,493	5,433	11	\$18.38	\$	0.147	Natural Gas	\$ 100,143	463	79,011	\$	1.26	\$ 100, 143	7,901	\$	12.67	\$	0.62	\$3.62	101.34	\$	587,048
Roosevelt tigh School	211,500	5	419,744	2,037,280	s	101,393	S	19,346	5,946	11	\$ 17.05	s	0.147	Natural Gas	\$ 102,078	8,660	91,656	\$	1.02	\$ 102,078	9,166	\$	11.14	S	0.48	\$ 2.47	76.21	S	521,822
TOTALS	660,440	s	1,559,224	7,584,640	\$	365,982	\$	78,118	20,389		\$ 17.95	\$	0.147		\$ 381,457	\$ 11,042	312,593	S	1.18	\$ 381,457	31,259	\$	12.20	S	0.58	\$2.94	86.53	\$	1,940,681

Electric	$\$ 1,559,224$
Natural Gas	$\$ 181,45$
Total	$\$ 1,940,681$

Natural Gas	100,000	U/Therm
Fuel iil \#2	138,500	BTU/Gallon
el ill \#4	,00	BTV/Gallon
el	0	B
Propane	91,500	BTV/Gallon
Wood Chips	9,200,000	BTU/Ton
Wood Pellets	15,980,000	BTU/Ton

Meter Tuning Contract

Project: NY Roosevelt UFSD
Area: Centennial Ave ES Account: 4330629004

Site: NY Roosevelt UFSD
Meter: Centennial-NG-1
Unit: Therm(Qty OnPk)

Centennial-NG-1 (Account \# 4330629004): Tuning Period is 365 days from 6/30/2021 until 6/29/2022.
Below is the equation used to calculate the Baseline values for the tuning period and all future periods:

$$
\text { Baseline (Therm) }=5.7125 \times \text { \#Days }+6.871 \times \text { HDD }+ \text { Offset }
$$

The Baseline Equation has a Net Mean Bias of 0% and a Monthly Mean Error of $+/-21.5039 \%$. The underlying regression has a $\mathrm{R}^{2}=0.966$
Baseline Costs are calculated using Average Total Cost/Consumption.

Explanations and Assumptions:

\square (empty checkbox) under 'Incl?' indicates that the bill is excluded from the regression. However the Baseline Equation is always applied for all billing periods, even those excluded from the regression. HDD = Heating Degree-Days calculated for FARMINGDALENY for a 64.0 Fo balance point. Multiplier and Offset are derived from Modification(s) in effect during the tuning period and are replicated annually for all future periods.

Meter Tuning Contract

Project：NY Roosevelt UFSD
Area：Roosevelt HS
Account： 9134266004

Site：NY Roosevelt UFSD
Meter：Roosevelt－NG－1
Unit：Therm（Qty OnPk）

From	To	\＃Days	Reading	Incl？	HDD	CDD	Offset	Baseline	Deviation
06／30／21	07／30／21	31	443	区	0.0	0.0	－	509	14．9\％
07／31／21	08／31／21	32	473	区	0.0	0.0	－	525	11．0\％
09／01／21	09／29／21	29	566	区	0.0	0.0	－	476	－15．9\％
09／30／21	10／28／21	29	691	区	39.5	0.0	－	1，389	101．0\％
10／29／21	11／30／21	33	9，951	区	456.5	0.0	－	11，091	11．5\％
12／01／21	12／30／21	30	12，748	区	560.0	0.0	－	13，434	5．4\％
12／31／21	01／28／22	29	19，675	区	842.0	0.0	－	19，935	1．3\％
01／29／22	02／28／22	31	20，330	区	827.5	0.0	－	19，633	－3．4\％
03／01／22	03／30／22	30	13，518	区	550.0	0.0	－	13，203	－2．3\％
03／31／22	04／29／22	30	9，033	区	328.5	0.0	－	8，084	－10．5\％
04／30／22	05／31／22	32	3，221	区	83.5	0.0	－	2，455	－23．8\％
06／01／22	06／29／22	29	561	区	0.0	0.0	－	476	－15．2\％
Sum／Average／Max		365	91，210		3687.5	0.0	－	91，210	\％＋／－8．3\％

Roosevelt－NG－1（Account \＃9134266004）：Tuning Period is 365 days from 6／30／2021 until 6／29／2022．
Below is the equation used to calculate the Baseline values for the tuning period and all future periods：
Baseline（Therm）＝ $16.4138 \times$ \＃Days $\mathbf{+ 2 3 . 1 1 0 2 \times H D D}$
The Baseline Equation has a Net Mean Bias of 0% and a Monthly Mean Error of $+/-8.3409 \%$ ．The underlying regression has a $\mathrm{R}^{2}=0.9936$
Baseline Costs are calculated using Average Total Cost／Consumption，but no less than \＄1．08／Therm．

Explanations and Assumptions：

\square（empty checkbox）under＇Incl？＇indicates that the bill is excluded from the regression．However the Baseline Equation is always applied for all billing periods，even those excluded from the regression． HDD＝Heating Degree－Days calculated for FARMINGDALENY for a 61.0 Fo balance point． Multiplier is derived from Modification（s）in effect during the tuning period and is replicated annually for all future periods．

Meter Tuning Contract

Project: NY Roosevelt UFSD
Area: Roosevelt MS
Account: 5396235005

Site: NY Roosevelt UFSD
Meter: Roosevelt MS-NG-1
Unit: Therm(Qty OnPk)

Roosevelt MS-NG-1 (Account \# 5396235005): Tuning Period is 366 days from 6/30/2021 until 6/30/2022. Below is the equation used to calculate the Baseline values for the tuning period and all future periods:

$$
\text { Baseline (Therm) = } 8.9429 \times \text { \#Days + } 24.9071 \times \text { HDD + Offset }
$$

The Baseline Equation has a Net Mean Bias of 0% and a Monthly Mean Error of $+/-19.1778 \%$. The underlying regression has a $\mathrm{R}^{2}=0.929$
Baseline Costs are calculated using Average Total Cost/Consumption.
Explanations and Assumptions:
\square (empty checkbox) under 'Incl?' indicates that the bill is excluded from the regression. However the Baseline Equation is always applied for all billing periods, even those excluded from the regression. HDD = Heating Degree-Days calculated for FARMINGDALENY for a 58.0 Fo balance point. Multiplier and Offset are derived from Modification(s) in effect during the tuning period and are replicated annually for all future periods.

Meter Tuning Contract

Project: NY Roosevelt UFSD
Area: Ulysses Pyas ES
Account: 174815000

Site: NY Roosevelt UFSD
Meter: Ulysses-NG-1
Unit: Therm(Qty OnPk)

Ulysses-NG-1 (Account \# 174815000): Tuning Period is 365 days from 6/30/2021 until 6/29/2022.
Below is the equation used to calculate the Baseline values for the tuning period and all future periods:
Baseline (Therm) $=1.2815 \times$ \#Days $+14.6759 \times$ HDD
The Baseline Equation has a Net Mean Bias of 0% and a Monthly Mean Error of $+/-12.017 \%$. The underlying regression has a $R^{2}=0.9873$
Baseline Costs are calculated using Average Total Cost/Consumption.

Explanations and Assumptions:

\square (empty checkbox) under 'Incl?' indicates that the bill is excluded from the regression. However the Baseline Equation is always applied for all billing periods, even those excluded from the regression. HDD = Heating Degree-Days calculated for FARMINGDALENY for a 61.0 Fo balance point. Multiplier is derived from Modification(s) in effect during the tuning period and is replicated annually for all future periods.

Meter Tuning Contract

Project：NY Roosevelt UFSD
Area：Washington－Rose ES
Account： 5463965009

Site：NY Roosevelt UFSD
Meter：Washington－NG－1
Unit：Therm（Qty OnPk）

From	To	\＃Days	Reading	Incl？	HDD	CDD	Offset	Baseline	Deviation
06／30／21	07／30／21	31		区	1.0	0.0	－	24	0．0\％
07／31／21	08／31／21	32		区	0.0	0.0	－	12	0．0\％
09／01／21	09／29／21	29	5	区	0.0	0.0		10	109．8\％
09／30／21	10／28／21	29	108	区	49.0	0.0	－	636	488．8\％
10／29／21	11／30／21	33	6，922	区	489.5	0.0	－	6，259	－9．6\％
12／01／21	12／29／21	29	7，370	区	570.5	0.0	－	7，292	－1．1\％
12／30／21	01／28／22	30	10，896	区	890.5	0.0	－	11，376	4．4\％
01／29／22	02／28／22	31	10，801	区	858.5	0.0	－	10，968	1．5\％
03／01／22	03／30／22	30	8，003	区	580.0	0.0	－	7，413	－7．4\％
03／31／22	04／29／22	30	4，269	区	357.5	0.0	－	4，573	7．1\％
04／30／22	05／31／22	32	1，437	区	98.5	0.0	－	1，269	－11．7\％
06／01／22	06／29／22	29	31	区	0.0	0.0	－	10	－66．2\％
Sum／Average／Max		365	49，842		3895.0	0.0	－	49，842	\％＋／－8．7\％

Washington－NG－1（Account \＃5463965009）：Tuning Period is 365 days from 6／30／2021 until 6／29／2022．
Below is the equation used to calculate the Baseline values for the tuning period and all future periods：
Baseline（Therm）$=0.3617 \times$ \＃Days $+12.7625 \times$ HDD
The Baseline Equation has a Net Mean Bias of 0% and a Monthly Mean Error of $+/-8.7484 \%$ ．The underlying regression has a $\mathrm{R}^{2}=0.9934$
Baseline Costs are calculated using Average Total Cost／Consumption．

Explanations and Assumptions：

\square（empty checkbox）under＇Incl？＇indicates that the bill is excluded from the regression．However the Baseline Equation is always applied for all billing periods，even those excluded from the regression． HDD＝Heating Degree－Days calculated for FARMINGDALENY for a 62.0 Fo balance point． Multiplier is derived from Modification（s）in effect during the tuning period and is replicated annually for all future periods．

Meter Tuning Contract

Project：NY Roosevelt UFSD Area：Washington－Rose ES Account： 4218566006

Site：NY Roosevelt UFSD
Meter：Washington－NG－2
Unit：Therm（Qty OnPk）

From	To	\＃Days	Reading	Incl？	HDD	CDD	Offset	Baseline	Deviation
06／30／21	07／30／21	31	231	区	0.0	0.0	231	231	0．0\％
07／31／21	08／31／21	32	536	区	0.0	0.0	536	536	0．0\％
09／01／21	09／28／21	28	255	区	0.0	0.0	255	255	0．0\％
09／29／21	10／28／21	30	268	区	0.0	0.0	268	268	0．0\％
10／29／21	11／30／21	33	327	区	0.0	0.0	327	327	0．0\％
12／01／21	12／29／21	29	290	区	0.0	0.0	290	290	0．0\％
12／30／21	01／28／22	30	337	区	0.0	0.0	337	337	0．0\％
01／29／22	02／28／22	31	326	区	0.0	0.0	326	326	0．0\％
03／01／22	03／30／22	30	334	区	0.0	0.0	334	334	0．0\％
03／31／22	04／29／22	30	305	区	0.0	0.0	305	305	0．0\％
04／30／22	05／31／22	32	325	区	0.0	0.0	325	325	0．0\％
06／01／22	06／29／22	29	292	区	0.0	0.0	292	292	0．0\％
Sum／Averag		365	3，826		0.0	0.0	3，826	3，826	0．0\％

Washington－NG－2（Account \＃4218566006）：Tuning Period is 365 days from 6／30／2021 until 6／29／2022．
Below is the equation used to calculate the Baseline values for the tuning period and all future periods：
Baseline（Therm）＝Offset
The Baseline Equation has a Net Mean Bias of 0% ．The underlying regression has a $\mathrm{R}^{2}=0$ Baseline Costs are calculated using Average Total Cost／Consumption．

Explanations and Assumptions：

－（empty checkbox）under＇Incl？＇indicates that the bill is excluded from the regression．However the Baseline Equation is always applied for all billing periods，even those excluded from the regression． Multiplier and Offset are derived from Modification（s）in effect during the tuning period and are replicated annually for all future periods．

Roosevelt UFSD, NY
 Exhibit D-5-Baselin Utility Summary

July 2021 through June 2022

Building	SquareFootage	Electric												Fuel Designatio	Natural Gas							Total Thermal				Total Energy				
		Total Cost		Total kwh	Demand Cost		Fixed Costs	Total kW Demand	\$/kw		\$/kWh		$\begin{aligned} & \text { sper } \\ & \text { square } \end{aligned}$	$\begin{aligned} & \text { Main Heating } \\ & \text { Utility } \end{aligned}$	Total Cost	Fixed Costs	$\begin{gathered} \text { Total } \\ \text { Therms } \end{gathered}$	\$/Therm		$\begin{gathered} \text { sper } \\ \text { square } \end{gathered}$		Total Cost	MMBtu/ Yr Total	s/MMBtu	$\begin{aligned} & \text { sper } \\ & \text { square } \end{aligned}$	\$per		kBTU per Square	Total Cost	
tennial Avenue Elementar	101	\$	229,10	1,051,200	S	59,557	\$ 13,431	3,362	\$	17.71	\$	0.149	2.25	Natural Gas	36,802	491	33,673	s	1.08		. 36	36,802	3,367	10.93		5	2.61	68.2		265,910
Washington-Rose Elementary School	92,000	5	35,989	1,139,200	\$	5,943	\$ 13,074	2,892	\$	19.00	5	0.147	\$ 2.57	Natural 6	\$ 71,757	\$ 943	53,6	S	1.32	\$	0.78	71,757	5,36	13.3	\$ 0.78		3.35	100.6	\$	37,745
Ulysses Byas Elementary School	93,000	s	187,479	861,920	\$	50,242	\$11,774	2,756	\$	18.23	\$	0.146	\$ 2.02	Natural Gas	\$ 70,676	486	54,985	\$	1.29		. 76	\$ 70,676	5,459	12.9	\$ 0.7	\$	2.78	90.3	\$	258,155
Roosevelt Midall School	162,000	\$	486,905	2,495,040	\$	99,846	\$ 20,493	5,433	\$	18.38	\$	0.147	\$ 3.01	Natural Gas	\$ 100,143	463	79,011		1.26		0.62	\$ 100, 143	7,901	12.67	\$ 0.62	5	3.62	101	\$	587,048
Roosevelt High School	211,500	s	419,744	2,037,280		101,393	\$ 19,346	5,946	\$	17.05	s	0.147	\$ 1.98	Natural Gas	\$ 102,078	\$ 8,660	91, 656		1.02		. 48	\$ 102,078	9,166	\$ 11.14	\$ 0.48		2.47	76.2		521,822
Totals	660,44		1,559,224	7,584,640	\$	365,982	\$ 78,1	2,38	S	17.95	S	0.147	\$ 2.3		\$381,457	\$11,0420	312,5	s	1.18		. 58	\$381,45	31,259	12.2	0.58		2.9	86.5	\$	1,940,

Electric	\$ 1,559,224		Utility Costs by Type	
Natural Gas	381,457			
Total	\$ $1,940,681$			
Heating Conte			Electric	
Natural Gas	100,000	BTU/Therm	80.3\%	Natural Gas
Fuel Oil 1 2	138,500	BTU/Gallon		19.7\%
Fuel Oill $\# 4$	145,000	BTU/Gallon		
Fuel Oil 1 \%	153,00	BTU/Gal		
Propane	91,500	BTU/Gallon		
Wood chips	$9,200,000$ 15,98000	${ }_{\text {BTU/Ton }}$		

Roosevelt UFSD, N

Exhibit D-5-w
Weather Data - TMY 3 Hourly Records

JFK International Airport, NY

ths							
Amb. Temp Bin [${ }^{\text {F }}$]	${ }^{\text {Ave Temp }}$	01.08 Hours	O9-16 Hours	$\begin{aligned} & \hline 17-24 \\ & \text { Hours } \end{aligned}$	WB [$\left.{ }^{\circ} \mathrm{F}\right]$	Enthalpy [BTU/b]	Total Bin Hours
100 to 105							
100 to 105	102.5	-	-		-	-	
95 to 100	97.5		3	-	75	39	3
90	92.5	-	18	3	1.8	35.4	21
85 to 90	87.5		100	18	72.9	36.4	118
80 to 85	82.5	37	292	126	71.4	35.1	455
75 to 80	77.5	189	296	247	69.6	33.6	732
70 to 75	72.5	275	234	272	66.5	31.1	781
65 to 70	67.5	245	248	272	61.7	27.6	765
60 to 65	62.5	282	226	287	57.3	24.6	795
Total		1,028	1,417	1225			3,670

JFK International Airport, NY

All Months

Amb. Temp Bin [${ }^{\text {FF] }}$	Ave Temp $\left[{ }^{\circ} \mathrm{F}\right]$	$\begin{aligned} & 01-08 \\ & \text { Hours } \end{aligned}$	$\begin{aligned} & \hline 09-16 \\ & \text { Hours } \end{aligned}$	$\begin{aligned} & 17-24 \\ & \text { Hours } \end{aligned}$	WB [$\left.{ }^{\circ} \mathrm{F}\right]$	$\begin{aligned} & \text { Enthalpy } \\ & {[\text { BTU/lb] }} \end{aligned}$	$\begin{gathered} \hline \text { Total Bin } \\ \text { Hours } \end{gathered}$
55 to 60	57.5	259	225	246	52.1	21.4	730
50 to 55	52.5	236	228	217	47.6	18.9	681
45 to 50	47.5	158	206	181	42.9	16.6	545
40 to 45	42.5	320	280	332	39.1	14.8	932
35 to 40	37.5	395	283	367	34.0	12.6	1,045
30 to 35	32.5	239	120	167	29.1	10.5	526
25 to 30	27.5	109	76	81	23.4	8.3	266
20 to 25	22.5	100	51	72	18.9	6.7	223
15 to 20	17.5	58	29	25	14.6	5.3	112
10 to 15	12.5	10	5	6	9.5	3.6	21
5 to 10	7.5	8	-	1	5.3	2.4	9
0 to 5	2.5						
-5 to 0	-2.5						
-10to-5	-7.5						
-15 to - 10	-12.5						
Total		1,892	1,503	1,695			5,090

JFK International Airport, NY

$\begin{array}{\|c} \hline \text { Amb. Temp } \\ \text { Bin }\left[{ }^{\circ} \mathrm{F}\right] \\ \hline \end{array}$	$\begin{gathered} \text { Ave Temp } \\ {\left[{ }^{[} \mathrm{F}\right]} \end{gathered}$	$\begin{array}{\|l\|} \hline 01-08 \\ \text { Hours } \end{array}$	$\begin{array}{\|l} \hline 09-16 \\ \text { Hours } \end{array}$	$\begin{aligned} & 17-24 \\ & \text { Hours } \end{aligned}$	WB [${ }^{\circ}$]	$\begin{array}{\|l} \hline \text { Enthalpy } \\ \text { [BTU/b] } \end{array}$	$\begin{array}{\|c\|} \hline \text { Total Bin } \\ \text { Hours } \end{array}$
100 to 105	102.5		-		-		
95 to 100	97.5	.	3	-	75	39	3
90 to 95	92.5		18	3	71.8	35.4	21
85 to 90	87.5	-	100	18	72.9	36.4	118
80 to 85	82.5	37	292	126	71.	35.1	455
75 to 80	77.5	189	289	247	69.7	33.7	725
70 to 75	72.5	275	200	270	66.6	31.2	745
65 to 70	67.5	236	184	245	61.7	27.5	665
60 to 65	62.5	232	158	196	56.9	24.3	586

JFK International Airport, NY

Heating Months Only (October

Bin [F]	[F]	Hours	Hours	Hours	WB [${ }^{\text {P }}$]	[BTU//b]	Hours
55 to 60	57.5	60	127	96	51.2	20.9	283
50 to 55	52.5	110	178	125	47.2	18.8	413
45 to 50	47.5	108	164	121	42.7	16.5	393
40 to 45	42.5	240	251	280	39.0	14.7	771
35 to 40	37.5	355	282	362	34.0	12.5	999
30 to 35	32.5	239	120	167	29.1	10.5	526
25 to 30	27.5	109	76	81	23.4	8.3	266
20 to 25	22.5	100	51	72	18.9	6.7	223
15 to 20	17.5	58	29	25	14.6	5.3	112
10 to 15	12.5	10	5	6	9.5	3.6	21
5 to 10	7.5	8		1	5.3	2.4	
0 to 5	2.5						
-5 to 0	-2.5						
-10 to-5	-7.5						
-15 to-10	-12.5						

Roosevelt UFSD, NY

Exhibit D-5-W

Weather Data - TMY 3 Hourly Records

	ExISting				
	Weekday Schedule		Weekend Schedule		
Building	Start Time	End Time	Start Time	End Time	Summer Schedule
Centennial Avenue Elementary School	5:30 AM	9:30 PM			
Washington-Rose Elementary School	12:00 AM	12:00 Am	12:00 AM	12:00 AM	
Ulysses Byas Elementary School	5:30 AM	7:00 PM			
Roosevelt Middle School	3:00 AM	12:00 AM			
Roosevelt tigh School	6:00 AM	9:00 PM			

PROPOSED			
Weekday Schedule		Weekend Schedule	
Start Time	End Time	Start Time	End Time
6:00 AM	4:00 PM		
6:00 AM	4:00 PM		
6:00 AM	4:00 PM		
6:00 AM	6:00 PM		
6:00 AM	6:00 PM		

PROPOSED								
Weekday Schedule			Weekend Schedule			Weighted		
01-08	09-16	17-24	01-08	09-16	17-24	01-08	09-16	17-24
Hours								
2.0	8.0					0.18	0.71	
2.0	8.0					0.18	0.71	
2.0	8.0			-		0.18	0.71	
2.0	8.0	2.0		-		0.18	0.71	0.18
2.0	8.0	2.0				0.18	0.71	0.18

NOTES:

1) All proposed HVAC run times all for a minimum of one (1) hour warm up period prior to occupant arrival
2) Existing schedules and setpoints are based on detailed review of thermostats, interviews with staff, and a review of temperature data logging results
3) Proposed schedules based on information provided by the Facilities Departmen
4) Guaranteed contractual savings are based on the proposed schedules and setpoints listed in this document

Roosevelt UFSD, NY
 Exhibit D-5-Summary Energy Savings Summary

$\begin{aligned} & \text { ECN } \\ & \text { No. } \end{aligned}$	Description	$\begin{array}{\|c} \text { Total } \\ \text { Guaraned } \\ \text { Energy \& Water } \\ \text { Savings } \end{array}$		$\begin{gathered} \text { \% of Baseline } \\ \text { Total Utility } \\ \text { cost } \end{gathered}$	Guaranteed Energy \& Water Savings												
				ELECTRIC	natural gas												
				$\begin{gathered} \mathrm{kwn} \\ \text { savings } \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \mathrm{kWh} \\ \% \text { Baseline } \\ \hline \end{array}$	kW Savins	kW \% of Baseline	Total $\$ \$$ Savings		$\begin{aligned} & \text { Electric s } \\ & \% \text { Baseline } \end{aligned}$	Therm Savings	$\begin{gathered} \text { Therm } \\ \% \text { Baseline } \end{gathered}$	Therm \$\$ Savings		Therm \$ \% Baseline		
1	LED Lighting and Lighting Controls Upgrade		187,291		9.7\%	848,067	11.2\%	3,769.4	18.5\%	s	192,219	12.3\%	(4,274)	-1.4\%	5	(4,928)	-1.3\%
2	Boiler Plant Upgrades		40,272		2.1\%		0.0\%	-	0.0\%	\$		0.0\%	15,328	4.9\%	\$	40,272	10.6\%
3	DHW Heater Upgrades		789	0.0\%		0.0\%	-	0.0\%	\$	-	0.0\%	698	0.2\%	\$	789	0.2\%	
4	Mechanical Upgrades		3,590	0.2\%	21,733	0.3\%	21.8	0.1\%	\$	3,590	0.2\%		0.0\%	s		0.0\%	
5	Install De-Stratification Fans		3,371	0.2\%	$(3,897)$	-0.1\%		0.0\%	\$		0.0\%	3,431	1.1\%	s	3,944	1.0\%	
6	Building Management System Upgrades		155,726	8.0\%	473,613	6.2\%	-	0.0\%	\$	69,731	4.5\%	65,866	21.1\%	\$	85,995	22.5\%	
7	Builiding Envelope Improvements		7,535	0.4\%	8,795	0.1\%	-	0.0\%	\$	1,293	0.1\%	5,506	1.8\%	s	6,242	1.6\%	
8	Pipe Insulation		7,738	0.4\%		0.0\%		0.0\%	\$		0.0\%	6,580	2.1\%	5	7,738	2.0\%	
9	Install Walk-ln Freezer/Coolers Controlers		6,796	0.4\%	43,564	0.6\%	22.0	0.1\%	\$	6,796	0.4\%		0.0\%	\$		0.0\%	
10	Install Solar PV System		640,831	33.0\%	4,358,407	57.5\%		0.0\%	\$	640,831	41.1\%		0.0\%	\$		0.0\%	
	Total:		1,053,939	54.3\%	5,750,283	75.8\%	3,813.2	18.7\%	5	913,887	58.\%	93,134	29.8\%	5	140,052	36.7\%	

Roosevelt UFSD,

Savings Interaction Summary
boiler fuel aduustments due to interactive ecms
Fuel Adjustment (Therms) - Boiler load only

Include	ECM	Unadiusted Bas	Centennial Avenue Elementary School	$\begin{array}{\|c\|} \hline \text { Washington- } \\ \text { Rose } \\ \text { Elementary } \\ \text { School } \\ \hline \end{array}$	$\begin{array}{\|c\|c} \hline \begin{array}{c} \text { Ulysses } \\ \text { Byas } \\ \text { Elementary } \\ \text { School } \end{array} \\ \hline \end{array}$ School	Roosevelt Middle School	Roosevelt tigh School
	exm	Unajusted aseeline $^{\text {a }}$	33,673	${ }^{53,668}$	54,585	79,011	${ }^{91,656}$
		DHW Usage (\% of Building ThermalUsage	5.0\%	5.0\%	5.0\%	5.0\%	5.0\%
		dHw	1,684	2,683	2,729	3,951	4,5
		Adjusted Baseline	31,889	50,985	51,856	75,060	87,073
v	1	ECM 1 - LED Lighting and Lighting Controls Upgrade	-607	-459	-651	-925	-1,632
		Adjusted Baseline	32,996	51,444	52,507	75,986	88,705
v	3	ECM 3 - DHW Heater Upgrades	0	258	0	0	440
		Adjusted Baseline	32,596	51,186	52,507	75,96	88,265
y	4	ECM 4 - Mechanical Upgrades	0	0	0	0	0
		Adjusted Baseline	32,596	51,186	52,507	75,986	88,265
v	5	ECM 5-Install De-Stratification $\underset{\text { Fans }}{\substack{\text { and }\\}}$	429	472	398	716	1,417
		Adjusted Baseline	32,168	50,714	52,109	75,270	86,848
v	7	ECM 7 - Building Envelope Improvements	722	652	428	1,142	2,562
		Adjusted Baseline	31,445	50,063	51,681	74,128	84,286
y	8	ECM 8 - Pipe Insulation	1,726	1,221	581	1,685	1,367
		Adjusted Baseline	29,719	48,842	51,100	72,443	82,919
v	9	ECM 9 - Install Walk-In Freezer/Coolers Controllers	0	0	0	0	0
		Adjusted Baseline	29,719	48,842	51,100	72,443	82,919
v	10	ECM 10- Install Solar PV System	0	0	0	0	0
		Adjusted Baseline	29,719	48,842	51,100	72,443	82,919
n	2	ECM 2 - Boiler Plant Upgrades	0	0	0	0	0
		Adjusted Baseline	29,719	48,842	51,100	72,443	82,919
n	6	ECM 6 - Building Management System Upgrades	0	0	0	0	0
		Adjusted Baseline	29,719	48,842	51,100	72,443	82,919

Roosevelt UFSD, N Exhibit D-5-1

ECM 1- LED Lighting and Lighting Controls Upgrade

ECM DESCRIPTION

Upgrades existing lighting with state of the art, high efficiency LED lighting. Where applicable, install occupancy senors for lighting contro

DATA/ASSUMPTIONS

Heating Season Length $[$ [Weeks]	
$*$	
$*$ Percent of Heating Season $[\%]$	
$* *$	20

40%

Heating Season Length [Hours]
Fraction of the year representing the heating season, as there are times during the year when the building is neither heated nor cooled

Commissioning
Confirm lighting operation and occupancy sensor functionality
RECovery/Safety factor
Electric Safety Factor $[\%]=$
Thermal Safetety factor $[$ [$[\%]=$

```
0%
```

eormulat
$\mathrm{C}_{\text {SavNGS }}=\mathrm{KW}_{\text {Propoosese }} \cdot\left(\mathrm{T} \cdot \mathrm{C}_{\%}\right)$
$L_{\text {savings }}=k W_{\text {savw }}$. $\cdot T$
$k W_{\text {savncs }}=k W_{\text {Exstring }}-k W_{\text {Proposse }}$

$\mathrm{T}_{\text {Eauvatent }}=\left(\mathrm{L}_{\text {SAWWGs }}+\mathrm{C}_{\text {SAWNGS }}\right) \cdot 3,412 / 100,000$

Roosevelt UFSD,
 ECM 1- LED Lighting and Lighting Controls Upgrade

Variable]Units	Descripion
$\mathrm{C}_{\text {Suwncs }}$	kWh	Lighting consumption savings from lighting controls
$L_{\text {saungs }}$	kwh	Lighting consumption savings
$\mathrm{c}_{\%}$	\%	Percent reduction in lighting hours of operation with lighting controls
T	Hours	Annual lighting hours of operation
$\mathrm{kW}_{\text {Sunwos }}$	kw	Total lighting power savings
$\mathrm{kW}_{\text {Prooose }}$	kw	Total proposed lighting power draw
kW ExStivg	kw	Total existing lighting power draw
$H_{\text {penalir }}$	Therms	Total heating penatty
Tequvalent	Therms	Therm equivalent of lighting consumption savings
\%mane:vp	\%	Fraction of heat to be made up
\%hearseason	\%	Percentage heating season of entire year
Пнеатік	\%	Heating system efficiency

calculations
Detailed energy savings calculations are in the line-by-line calculation sheet
*Inputs are blue

Building	Lighting Consumption Savings $[k W h]$	Controls Consumption Savings [kWh]	$\begin{array}{\|c\|} \hline \text { Lighting } \\ \text { Demand } \\ \text { Savings }[k W] \end{array}$	Proposed Boiler Efficiency [\%]
Centennial Avenue Elementary School	105,536	1,664	50.49	79.0\%
Washington-Rose Elementary School	9,593	1,392	50	89.0\%
Ulysses Byas Elementary School	114,438	2,088	57.21	81.0\%
Roosevelt Middle School	190,687	5,684	91.06	89.0\%
Roosevelt tigh School	282,131	18,283	102.41	89.0\%
Totals	792,38	29,110	342.67	

Roosevelt UFSD, NY
 Exhibit D-5-1

ECM 1 - LED Lighting and Lighting Controls Upgrade
calculations

	$\begin{gathered} \hline \text { Centennial } \\ \text { Avenue } \\ \text { Elementary } \\ \text { School } \end{gathered}$	$\begin{aligned} & \text { Washington- } \\ & \text { Rose } \\ & \text { Elementary } \\ & \text { School } \end{aligned}$	Ulysses Byas Elementary School	Roosevelt Middle School	Roosevelt Hig School
Lighting Derate [\%]	0\%	0\%	0\%	0\%	0\%
Lighting Saving [kWh]	107,200	100,985	6,526	196,370	00,413
kW Saving [kw]	50.5	41.5	5.2	1	102.4
Heating Season [Weeks/vear]	20	20	20	20	
*\% of Heating Season [\%]	38\%	38\%	38\%	38\%	38\%
*Fraction of Heat to be Made-Up [\%]	40\%	40\%	40\%	40\%	40\%
Equivalent of Lighting k Wh Saved in Therms (Therms/ $/ \mathrm{r}$)	3,279	797	608	5,634	\%,939
Proposed Boiler fficicency \%\%	79.0\%	89.0\%	81.0\%	89.0\%	89.0\%
Heating Penalty (Therms)	(639)	(483.46)	(685)	974	(1,7)
Cooling Season [Weeks/Vear]	16	16	16	16	16
\% of Cooling Season [\%]	31\%	31\%	31\%	31\%	31\%
Fraction of cooling Avoided [\%]	35\%	35\%	35\%	35\%	35\%
Cooling Equipment COP	3.0 3.450	3.0 2.943	$\begin{array}{r}3.0 \\ 3,96 \\ \hline\end{array}$	3.0 928	3.0

SAVINGS SUMMARY

Building ID	kWh Savings	kW Savings	Thermal Savings	Safety Fattor
	kWh	kw	Therms	\%
Centennial Avenue Elementary School	110,650	50.5	(639)	0.0\%
Washington-Rose Elementary School	103,927	41.5	(483)	0.0\%
Ulysses Byas Elementary School	120,322	57.2	(685)	0.0\%
Roosevelt Midalle School	202,298	91.1	(974)	0.0\%
Roosevelt tigh School	310,870	102.4	(1,778)	0.0\%
Subtotal	848,067	342.7	(4,499)	

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Builing Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { asty } \end{gathered}$	Proposed Qty	Existing kw	Proposed kw	Existing Description	Proposed Description	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	Total kWh Proposed	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools Nr	Centennial Averue Elementary School	3		Classoom 3009	3	3	0.0550	0.0220	1x4, 2-1amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools MY	Centennial Averue Elementary School	23		Classroom 3009	10	10	0.0550	0.0220	1x4, 2-Lamp ${ }^{\text {8 }}$	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	${ }^{634}$	253	380
Roosevell Schools NY	Centennial Averue Elementary School	33		Classroom 3009	1	1	0.0640	0.0280	2x2, 4-Lamp T8	LED Int. Diviver Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Avenue Elementary School	3		Classoom 3008	3	3	0.0550	0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centennial Averue Elementary School	3		Classroom 3008	10	10	0.0550	0.0220	1xa, 2-1amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools NY	Centennial Averue Elementary School	63		Bathrom, Women's Rr1	5	5	0.0560	0.0170	CF PL (2) 26w	LED Retrofit an Kit. 8 nch, HLO	2,400	0.28	0.09	0.20	672	204	468
Roosevelt Schools NY	Centennial Avenue Elementary School	3		Batroom, Women's Rr1	1	1	0.0550	0.0220	1x4, -2-1amp T8	LED Int. Diver Lamps, (2) 4 Lamps, XL	2,400	0.06	0.02	0.03	13	53	79
Roosevell Schools NY	Centenial Avenue Elementary School	83		Batroom, Women's Rr1	1	1	0.0450	0.0220	1x3, 2-1amp T8		2,400	0.05	0.02	0.02	108	53	55
Roosevelt Schools NY	Centenial Avenue Elementary School	93		Jc 1	1	1	0.0560	0.0170	CF PL (2) 26w	LED Reterofit Can Kit, 8 nch, HLO	2,400	0.06	0.02	0.04	134	41	94
Roosevell Schools NY	Centenial Avenue Elementary School	103		Batrrom, Men's RR2	5	5	0.0560	0.0170	CF PL (2) 26w	LED Retroftit Can Kit, 8 nch, HLO	2,400	0.28	0.09	0.20	672	204	468
Roosevelt Schools NY	Centenial Avenue Elementary School	113		Batrrom, Men's RR2	1	1	0.0550	0.0220	1x4, -2-1amp T8	LED Int. Divive Lamps, (2) 4 Lamps, XL	2,400	0.06	0.02	0.03	132	53	79
Roosevelt Schools NY	Centennial Avenue Elementary School	123		Batrrom, Men's RR2	1	1	0.0450	0.0220	1x3, 2-Lamp T8		2,400	0.05	0.02	0.02	108	53	55
Roosevelt Schools NY	Centenial Avenue Elementary School	13.3		Jc 2	1	1	0.0560	0.0170	CF PL (2) 26w	LED Reterofit an Kit, 8 nch, HLO	2.400	0.06	0.02	0.04	${ }^{34}$	41	94
Roosevelt Schools NY	Centenial Avenue Elementary School	143		Classroom 3005	3	3	0.0550	0.0220	1x4, 2-1amp T8	LED Int. Divier Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevell Schools NY	Centenial Avenue Elementary School	153		Classroom 3005	10	10	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevell Schools NY	Centennial Avenue Elementary School	163		Classroom 3005	1	1	0.0640	0.0280	2x2, 4-2amp 8	LED Int. Divier Lamps, (4) 2 Lamps	1,152	0.06	0.03	. 04	74	32	41
Roosevelt Schools NY	Centenial Avenue Elementary School	173		Classoom 3004	3	3	0.0550	0.0220	1x4, 2-Lamp T8	LED int. Diver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centennial Avenue Elementary School	183		Classoom 3004	10	10	0.0550	0.0220	1x4, 2-1amp T8	LED Int. Diver Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevell Schools NY	Centennial Avenue Elementary School	193		Classoom 3004	1	1	0.0640	0.0280	2x2, 4-Lamp T8	LED int. Divier Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centenial Avenue Elementary School	203		Classroom 3003	3	3	0.0550	0.0220	1x4, 2-Lamp T8	LED int. Diver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centennial Avenue Elementary School	213		Classroom 3003	10	10	0.0550	0.0220	1xt, 2-1amp T8	LED Int. Divier Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools NY	Centennial Avenue Elementary School	223		Classroom 3003	1	1	0.0640	0.0280	2x2, 4-1.amp T8	LED int Diviver Lamps, (4) 2^{2} Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevell Schools NY	Centennial Avenue Elementary School	233		Classroom 3002	3	3	0.0550	0.0220	1x4, --Lamp T8	LED int. Diver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centenial Avenue Elementary School	243		Classroom 3002	10	10	0.0550	0.0220	1xa, 2-Lamp T8	LED lnt. Driver Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevell Schools NY	Centennial Avenue Elementary School	253		Classsoom 3002	1		0.0640	0.0280	2x2, 4-2amp 8	LED Int. Divier Lamps, (4) 2^{2} Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevell Schools NY	Centennial Avenue Elementary School	263		Classroom 3015	2	2	0.0710	0.0350	2x2, 2-Lamp 40 Biax	LED Retoffit Panel Kit, 2x2, MLO	1,152	0.14	0.07	0.07	164	81	83
Roosevelt Schools NY	Centenial Avenue Elementary School	273		Classroom 3015	10	10	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	${ }^{634}$	253	380
Roosevell Schools NY	Centennial Avenue Elementary School	283		Classroom 3015	1		0.0640	0.0280	2x2, 4-1amp T8	LED Int. Divier Lamps, (4) 2^{2} Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centenial Avenue Elementary School	293		Classoom 3014	2	2	0.0710	0.0350	2x2, 2-Lamp 40 Biax	LED Retroft Panel Ki, 2x2, NLO	1,152	0.14	0.07	0.07	164	81	83
Roosevell Schools NY	Centenial Avenue Elementary School	303		Classroom 3014	10	10	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	${ }^{634}$	253	380
Roosevell Schools NY	Centennial Avenue Elementary School	${ }_{31} 3$		Classoom 3014	1		0.0640	0.0280	2x2, 4-Lamp T8	LED Int. Diver Lamps, (4) 2^{2} Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centenial Avenue Elementary School	323		Classoom 3013	3	3	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centenial Avenue Elementary School	333		Classroom 3013	10	10	0.0550	0.0220	1x4, --1amp T8	LED Int. Diver Lamps, (2) 4'Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools NY	Centenial Avenue Elementary School	343		Classroom 3013	1	1	0.0640	0.0280	2x2, 4-1amp ${ }^{\text {c }}$	LED Int. Divier Lamps, (4) ${ }^{2}$ Lamps	1,152	0.06	0.03	0.04	74	32	41

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \mathrm{kN} \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	Total kwn Prooosed	Total kWh
Roosevelt Schools NY	Centennial Averue Elementary School	353		Classroom 3012	3	3	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools My	Centennial Averue Elementary School	363		Classroom 3012	10	10	0550	0.020	4, 2-L-2mp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.55	0.22	${ }^{0.33}$	634	253	380
Roosevelt Schools NY	Centenial Avenue Elementary School	373		Classroom 3012	1	1	0.0640	\% 22	mp ${ }^{\text {¢ }}$	LED Int. Diviver Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Averue Elementary School	383		Classroom 3011	3	3	0.055	0.0220	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centennial Avenue Elementary School	393		Classroom 3011	10	10	0.0550	0.0220	4, 2--2amp 78	LED Int. Diviver Lamps, (2) 4'Lamps	, 152	0.55	0.22	0.33	634	253	380
Roosevelt Schools NY	Centennial Avenue Elementary School	4013		Classroom 3011	1	1	0.0640	\% 22	Lamp T8	LED nt. Divier Lamps, (4) ${ }^{2}$ Lamps	1,152	. 06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Averue Elementary School	413		office 3034	2	2	0.0710	0.0350	22, 2-Lamp 40 Biax	LED Retroft Panel Kit , 2x, NLO	1,152	0.14	0.07	0.07	164	81	${ }^{83}$
Roosevelt Schools NY	Centennial Avenue Elementary School	423		Office 3032	7	7	0.0710	0.0350	2-Lamp 40 Biax	LED Retrofit Panel Ki, 2x2, NLO	1,152	0.50	0.25	0.25	573	282	290
Roosevelt Schools NY	Centennial Avenue Elementary School	433		Storage 033	7	7	0.0710	330	2, 2-L-Lmp 40 Biax	LED Retorfit Pane Kit, 2x, NLO	600	0.50	0.25	0.25	298	147	151
Roosevelt Schools NY	Centennial Averue Elementary School	443		Classroom 3030	12	12	0.0710	0.03502	$2 \times 2,2$-tamp 40 Biax	LED Retroit Panel Kit 2x2, NLO	1,152	0.85	0.42	${ }^{43}$	982	484	498
Roosevelt Schools NY	Centennial Avenue Elementary School	453		Classroom 3030	3	3	0.0550	0.0220	1x, 2--Lamp T8	LED Int. Diviver Lamps, (2) 4'Lamps	1,152	0.17	0.07	0.10	190	76	114
Roseselt Schools NY	Centennial Avenue Elementary School	463		Classroom 3030	1	1	0.0640	0.0280	-Lamp T8	LED Int. Diver Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Averue Elementary School	473		Classroom 3020	3	3	0.05	0.0220		LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centennial Avenue Elementary School	483		Classroom 3020	12	12	0.0550	0.0220	1x, 2--1amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.66	0.26	0.40	760	304	456
Roosevelt Schools NY	Centennial Averue Elementary School	493		Classroom 3020	1	1	0.0640	0.0280	2, 4-L-amp T8	LED Int. Divier Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Averue Elementary School	503		Batrrom 3020a	1	1	0.0640	0.0280	2x, 4-L-amp T8	LED Int. Diviver Lamps, (4) $2^{\text {L Lamps }}$	2,400	0.06	0.03	0.04	154	67	${ }_{86}$
Roosevelt Schools NY	Centennial Averue Elementary school	513		Classroom 3026	3	3	0.0550	0.0220	1x4, 2--amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centennial Averue Elementary School	523		Classrom 322	12	12	0.0550	. 0220	4, 2 -Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.66	0.26	0.40	760	304	456
Roosevelt Schools NY	Centennial Averue Elementary School	533		Classroom 3226	1	1	0.0640	0.0280	2x, 4-L-amp T8	LED Int. Diviver Lamps, (4) $2^{\text {'Lamps }}$	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Avenue Elementary School	543		Storage 3026	2	2	0.0560	0.0170	L(2) 26w	LED Retrofit Can Kit. 8 nch, HLO	600	0.11	0.03	0.08	${ }^{67}$	20	47
Roosevelt Schools NY	Centenial Avenue Elementary School	553		Mechanical Rm 3026a	1	1	0.0550	0.0220	1x4, --1amp T8	LED nt. Diver Lamps, (2) 4'Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Centennial Averue Elementary School	56		Classroom 3023	4	4	0.055	0.0220	1x4, 2--2amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.22	0.09	0.13	253	101	152
Roosevelt Schools NY	Centennial Avenue Elementary School	573		Classroom 3023	16	16	0.0550	0.0220	1x, 2--1amp T8	LED Int. Diviver Lamps, (2) 4'Lamps	1,152	0.88	0.35	0.53	1.014	406	608
Roseselt Schools NY	Centennial Avenue Elementary School	583		Classroom 3023	1	1	0.0640	0.0280	2x2, 4-Lamp T8	LED Int. Diver Lamps, (4) ${ }^{\text {2 Lamps }}$	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Averue Elementary School	593		Batrrom 3023a	1	1	0.0640	0.0280	2x2, 4-Lamp T8	LED Int. Diviver Lamps, (4) 2 ${ }^{\text {L Lamps }}$	2,400	0.06	0.03	0.04	154	67	86
Roosevelt Schools NY	Centennial Avenue Elementary School	$60 / 3$		Batrroom 3021	1	1	0.0640	0.0280	2x, 4-L-amp T8	LED Int. Divier Lamps, (4) 2 Lamps	2.400	0.06	0.03	0.04	154	67	86
Rosevelt Schools NY	Centennial Avenue Elementary School	613		Lounge 4020	10	10	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diver Lamps, (2) 4'Lamps	2,400	0.55	0.22	0.33	1,320	528	792
Roosevelt Schools NY	Centennial Avenue Elementary School	623		Lounge 4020	1	1	0.0640	0.0280	2x, 4-L-amp T8	LED Int. Diviver Lamps, (4) $2^{\text {L Lamps }}$	2,400	. 06	0.03	0.04	154	67	86
Roosevelt Schools NY	Centennial Avenue Elementary School	633		Lounge 4020	2	2	0.0280	0.0160	CF PL 26 w	LED Retroftit Round Kit. 5.5 h nch, NLO	2.400	0.06	0.03	0.02	134	77	58
Roosevelt Schools NY	Centenial Avenue Elementary School	643		Jc 3019	1	1	0.0550	0.0221	x4, 2-L-Lamp T8	LED Int. Diver Lamps, (2) 4'Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Centenial Avenue Elementary School	653		Telecom Rm T11	2	2	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	66	26	40
Roosevelt Schools NY	Centennial Avenue Elementary School	66		Eleatrical Rm El	1		0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	750	0.06	0.02	0.03	41	17	25
Roosevelt Schools NY	Centennial Avenue Elementary School	$67 / 3$		Hallwa 3009 To 302	15	15	0.0280	0.0160	PPL 26w	LED Retroffit Round Kit. 5.5 lmch , NLO	3,000	0.42	0.24	0.18	,260	720	540
Roosevelt Schols NY	Centennial Avenue Elementary School	683		Halway 3009 To 302	2	2	0.0280	0.0160	CF PL 26w	LED Retroftit Round Kt. 5.5 hnch , NLO	3,000	0.06	0.03	0.02	168	96	72

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Description	Proposed Description	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	Total kWh	$\begin{gathered} \text { Total kWh } \\ \text { Saved } \end{gathered}$
Roosevelt Schools Nr	Centennial Avenue Elementary School	693		Halway 3009 To 3002	10	10	0.0640	0.0280	x2, 4-Lamp T8	LED int. Diviver Lamps, (4) ${ }^{2}$ Lamps	3,000	0.64	0.28	0.36	1,920	840	So
Roosevert Schools NY	Eentennial Avenue Elementar School	$70 / 3$		Hallway 3009 To 302	2	2	0.0550	0.022	4, 2--amp 78	LED Int. Diver Lamps, (2) 4 Lamps, XL	3,000	0.11	0.04	0.07	${ }^{330}$	132	198
Sosevelt Schools NY	Centennial Avenue Elementary School	713		alway 3009 To 3002	2	2	0.0450	0.022	1x3, 2-1amp T8	LED Int. Diver Lamps, (2) 3 Lamps, XL	3,000	0.09	0.04	0.05	270	132	138
Roosevelt Schools NY	Centennial Avenue Elementary School	723		Halway 3009 To 3002	1	1	0.0550	0.022	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	3,000	0.06	0.02	0.03	${ }^{165}$	66	99
Rooseenet Schools NY	Centennia Avenue Elementar School	73.3		Hallwa 3009 To 3002	3	3			Exit Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools NY	Centennia Avenue Elementar School	743		Halway Jc3 To 3030	8	8	0280	0.0160	CF PL 26 w	LED Retroftit Round Kit, 5.5 nch, MLO	3,000	0.22	0.13	0.10	672	384	288
Roosevelt Schools NY	Centennial Avenue Elementar School	75.3		Halway Jc3 To 0330	3	3	0.0640	0.0280	x2, 4-L-amp T8	LED Int. Diver Lamps, (4) ${ }^{2}$ Lamps	3,000	0.19	0.08	0.11	576	252	324
Roosevelt Schools Nr	Centennial Avenue Elementary School	76.3		Hallway Jc3 To 3030	16	16	0.0550	0.0220	1x4, -2-amp T8	LED Int. Diver Lamps, (2) 4 Lamps, XL	3.000	0.88	0.35	0.53	2.640	1.056	1,584
Rooseenet Schools NY	Centennial Avenue Elementary School	773		Halway Jc3 To 3030	2	2	0.0450	20	1x3, -L-Lamp T8	LED int. Divive Lamss, (2) 3^{3} Lamps, XL	3,000	0.09	0.04	0.05	270	132	${ }_{1} 138$
Roosevelt Schools NY	Centennial Avenue Elementary School	78.3		Halway Jc3 To 0330	2	2			Exti Sign - Led	will Not be Retroft	8,760			-			
Roosevelt Schoos NY	Centennia Avenue Elementar School	793		Halway yc 3 To 3030 Display	10	10	0.0650	0.0110	${ }^{\text {c 65w }}$	LED Lamp, RPAR30, NLO	3,000	0.65	0.11	0.54	1,950	330	1,620
Roosevelt Schools NY	Centennia Avenue Elementar School	$80 / 2$		Classroom 2009	3	3	0.0550	0.0220	-Lamp T8	LED lnt. Divier Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Rooseevet Schools NY	Centennia Avenue Elementar School	812		Classroom 2009	10	10	0.0550	0.0220	1x4, --1amp T8	LED int. Diver Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools NY	Centennia Avenue Elementar School	822^{2}		Classroom 2009	1		0.0640	0.0280	2x2, 4-1amp T8	LeD Int. Divier Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennia Avenue Elementar School	832		Classroom 2008	3	3	0.0550	0.0220	1x4, -2-1amp T8	LED not. Diver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schoos NY	Centennia Avenue Elementar School	${ }_{84} 2$		Classroom 2008	10	10	0.0550	0.0220	1x4, -2-1amp T8	LED Int. Diver Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools NY	Centennial Avenue Elementary school	$85 / 2$		Classroom 2008	1		0.0640	0.0280	2x2, 4-Lamp T8	LED Int. Divier Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Avenue Elementar School	$86 / 2$		Batroom, Women's Ri3	5	5	0.0560	0.0170	PL (2) 26w	LED Retofoft an kit, 8 nch, HLO	2,400	0.28	0.02	0.20	672	204	468
Roosevelt Schools NY	Centennial Avenue Elementar School	$87 / 2$		Batrroom, Women's Rr3	1		0.0550	0.0220	1x4, 2-Lamp T8	LED int. Divive Lamps, (2) 4 Lamps, XL	2,400	0.06	0.02	0.03	132	${ }^{53}$	79
Roosevelt Schoos NY	Centennia Avenue Elementar School	$88 / 2$		Batroom, Women's Rr3			0.0450	0.0220	1x, ,-2-amp T8	LED int. Diviver Lamps, (2) 3^{3} Lamps, XL	2,400	0.05	0.02	0.02	108	53	55
Roosevelt Schools NY	Centennia Avenue Elementar School	892		Jc 4	1		0.0560	0.0170	FPL (2) 26w	LED Retoroft Can Kit, 8 Inch, , HLO	2,400	0.06	0.02	0.04	134	41	94
Roosevelt Schools NY	Centennia Avenue Elementar School	$90 / 2$		Batroom, Men's R./4	5	5	0.0560	0.0170	CF PL (2) 26w	LED Retofoft Can Kit, 8 lech, HLO	2,400	0.28	0.09	0.20	672	204	468
Roosevelt Schools NY	Centennia Avenue Elementar School	912		Batrroom, Men's R./4			0.0550	0.0220	1x4, --1amp T8	LED int. Diviver Lamps, (2) 4 Lamps, XL	2,400	0.06	0.02	0.03	${ }^{132}$	53	79
Roosevelt Schoos NY	Centennial Avenue Elementay School	922		Batroom, Men's R.4			0.0450	0.0220	1x3, 2-Lamp T8	LED int. Diviver Lamps, (2) 3'Lamps, XL	2,400	0.05	0.02	0.02	108	53	55
Rosevelt Schools NY	Centennial Avenue Elementar School	$93 / 2$		Jc 5	1		0.0560	0.0170	CF PL (2) 26w	LED Retorfit Can Kit, 8 lnch, HLO	2,400	0.06	0.02	0.04	${ }^{134}$	41	94
Roosevelt Schoos NY	Centennia Avenue Elementar School	942		Classroom 2005	3	3	0.0550	0.0220	1x4, --1amp T8	LED Int. Diverer Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	90	76	114
Roosevelt Schoos NY	Centennial Avenue Elementay School	${ }_{95} 2$		Classroom 2005	10	10	0.0550	0.0220	1x4, --Lamp T8	LED not. Diver Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Rosevelt Schools NY	Centennia Avenue Elementar School	${ }_{96} / 2$		Classroom 2005	1		0.0640	0.0280	2x, 4-Lamp T8	LED nt. Diver Lamps, (4) ${ }^{2}$ Lamps	1,152	0.06	0.03	0.04	${ }^{74}$	32	41
Roosevelt Schools NY	Centennial Avenue Elementar School	$97 / 2$		Classroom 2004	3	3	0.0550	0.0220	1x4, --Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	14
Roosevelt Schools NY	Centennial Avenue Elementar School	982		Classroom 2004	10	10	0.0550	0.0220	1x4, -2-amp T8	LED not. Diver Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools NY	Centennia Avenue Elementar School	$99 / 2$		Classroom 2004	1		0.0640	0.0280	2x2, 4-Lamp T8	LED Int. Diver Lamps, (4) ${ }^{2}$ Lamps	1,152	0.06	0.03	0.04	${ }^{74}$	32	41
Roosevelt Schools NY	Centennial Avenue Elementar School	1002		Classroom 2003	3	3	0.0550	0.0220	1x4, --Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centennia Avenue Elementar School	1012		Classroom 2003	10	10	0.0550	0.0220	1x4, -2-amp T8	LED int. Divier Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools NY	Centenial Avenue Elementar School	$102 / 2$		Classroom 2003			0.0640	0.0280	2x2, 4-Lamp T8	LED Int. Driver Lamps, (4) ${ }^{2}$ Lamps	1,152	0.06	0.03	0.04	${ }^{74}$	32	

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \mathrm{kN} \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	Total kwn Prooosed	Total kWh
Roosevelt Schools NY	Centennial Averue Elementary School	1032		Classroom 2002	3	3	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools Nr	Centennial Avenue Elementary School	1042		Classsoom 2002	10	10	0.0550	022	x4, 2-Lamp 78	LED int. Diviver Lamps, (2) 4 Lamps	1,152	0.55	0.22	${ }^{0.33}$	634	253	380
Sosevelt Schools NY	Centennial Averue Elementary School	1052		Classroom 2002	1	1	0.0640	0.0280	mp	LED int. Driver Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Averue Elementary School	1062		Conference Rm 2036	6	6	0.0380	0.0145	1x4, 1-LILap T 5 E	LED Int. Diviver Lamp, (1) 4 ' 5 HELamp	1,000	0.23	0.09	0.14	228	87	141
Roosevelt Schools NY	Centennial Avenue Elementary School	1072		Conierencee Rm 2036	3	3	0.0180	0.0095	22, 1-Lamp TSE	LED Int. Diviver Lamp, (1) 2 ' 5 HELamp	1,000	0.05	0.03	0.03	54	29	26
Roosevelt Schools MY	Centennial Averue Elementary School	1082		Libray 2037	4	4	0.0280	0.0160	26w	LED Retroft Round Kit, 5.5 Inch, NLO	1,600	0.11	0.06	0.05	179	102	77
Roosevelt Schools MY	Centennial Averue Elementary School	1092		Library 2037	9	9	0.0280	0.0160	FPL 26 w	LED Retroft Pound Kt, 5.5 nch, NLO	1,600	0.25	0.14	0.11	403	230	173
Roosevelt Schools MY	Centennial Avenue Elementary School	1102		Libary 2037	15	15	0.0280	0.0160	26w	LED Retroftit Round Kit 5.5 h hch, NLLO, HLLLocation	600	0.42	0.24	0.18	672	384	288
Roosevelt Schools NY	Centennial Averue Elementary School	1112		brary 2037	50	50	0.0380	0145	4, 1-1-amp T5E	LED Int. Diviver Lamp, (1) 4 ' 5 HELamp	1,600	1.90	0.73	1.18	3,040	1,160	1,880
Roosevelt Schools NY	Centennial Averue Elementary School	1122		Libray 2037	3	3	0.0180	0.0095	k2, 1 -Lamp T5E	LED Int. Diviver Lamp, (1) 2' 5 HEL Lamp	1,600	0.05	0.03	0.03	86	46	41
Roosevelt Schools MY	Centennial Avenue Elementary School	1132		Libray Display 2037	1	1	0240	0.0110	1x3, 1-Lamp T8	LED Int. Diviver Lamp, (1) $3^{\text {L Lamp }}$	1,600	0.02	0.01	0.01	38	18	21
Roosevelt Schools NY	Centennial Averue Elementary School	1142		Library 2037	4	4			Extit Sign - Led	will Not be Retorfit	8,760						
Roosevelt Schools NY	Centennial Averue Elementary School	1152		Office 2041	2	2	0.0380	0.0145	1x4, 1-LILmp T5E	LED Int. Diver Lamp, (1) 4' 5 HELamp	1,152	0.08	0.03	0.05	88	33	54
Roosevelt Schools MY	Centennial Averue Elementary School	1162		Office 2040	6	6	0.0380	0.044	1x4, 1-Lamp T5E	LED int. Diviver Lamp, (1) 4 ¢ 5 HEL Lamp	1,152	0.23	0.09	0.14	263	100	162
Roosevelt Schools MY	Centennial Averue Elementary School	1172		Electrical Rm 2039	1	1	0.0380	0.0145	4, 1-Lamp T5E	LED Int. Diviver Lamp, (1) 4 ${ }^{\text {T } 5 \text { HELamp }}$	750	0.04	0.01	0.02	29	11	18
Roosevelt Schools NY	Centennial Averue Elementary School	1182		Bathroom 2038	5	5	0.056	0.0170	CF PL (2) 26w	LED Retrofit Can Kit, 8 nch, HLO	2,400	0.28	0.09	0.20	672	204	468
Roosevelt Schools NY	Centennial Averue Elementary School	1192		Classroom 2015	3	3	0.0550	0.0220	1x4, -2-amp T8	LED int. Driver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools MY	Centennial Averue Elementary School	1202		Classroom 2015	10	10	0.0550	. 0222	Lamp T8	LED int. Driver Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools NY	Centennial Averue Elementary School	1212		Classroom 2015	1	1	0.0640	0.0280	2x, 4-L-amp T8	LED Int. Diviver Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Avenue Elementary School	122		Classroom 2014	3	3	0.055	0.0220	44, 2-Lamp T8	LED Int. Driver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centenial Avenue Elementary School	${ }_{123} 2$		Classroom 2014	10	10	0.0550	0.0220	1x4, -2-amp T8	LED Int. Divier Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools NY	Centennial Averue Elementary School	${ }_{124}{ }^{2}$		Classroom 2014	1	1	0.0640	0.0280	2x2, 4--1amp T8	LED Int. Driver Lamps, (4) 2 Lamps	${ }^{1,152}$	0.06	0.03	0.04	74	32	41
Roosevelt Schools MY	Centennial Avenue Elementary School	${ }_{125} 2$		Classroom 2013	3	3	0.0550	0.0220	1x, 2--2amp T8	LED int. Driver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centennial Avenue Elementary School	$126 / 2$		Classroom 2013	10	10	0.0550	0.0220	1x4, 2-- $\mathrm{-amp}$ T8	LED Int. Divier Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools MY	Centennial Averue Elementary School	${ }_{127} 2$		Classroom 2013	1	1	0.0640	0.0280	2x2, 4-Lamp T8	LED Int. Driver Lamps, (4) ${ }^{2}$ Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools MY	Centennial Avenue Elementary School	1282		Classroom 2012	3	3	0.0550	0.0220	1x4, -2-amp T8	LED int. Diviver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools MY	Centennial Avenue Elementary School	1292		Classroom 2012	10	10	0.0550	0.0220	1x4, -2-amp T8	LED Int. Divier Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools MY	Centennial Averue Elementary School	1302		Classroom 2012	1	1	0.0640	0.0280	2x2, 4-Lamp T8	LED Int. Driver Lamps, (4) ${ }^{\text {L Lamps }}$	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Avenue Elementary School	1312		Classroom 2011	3	3	0.0550	0.0220	1x, 2--2amp T8	LED int. Diviver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools MY	Centennial Avenue Elementary School	1322		Classroom 2011	10	10	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools NY	Centennial Averue Elementary School	${ }_{133} 2$		Classroom 2011	1	1	0.0640	0.0280	2x, 4-L-amp T8	LED Int. Diviver Lamps, (4) 2 Lamps	1,152	06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Avenue Elementary School	1342		Office 2034	2	2	0.0710	0.0350	2x2, -2-Imp 40 Biax	LED Retorfit Panel Kit, 2x, NLO	1,152	0.14	0.07	0.07	164	81	83
Roosevelt Schools NY	Centennial Avenue Elementary School	${ }_{135} 2$		Office 2033	7	7	0.0710	0.0350	x2, 2-Lamp 40 Biax	LED Retofoft Panel Kit, 2x, NLO	1,152	0.50	0.25	0.25	573	282	290
Roosevelt Schools NY	Centennial Avenue Elementary School	${ }_{136} /$		Copy Room	2	2	0.0320	0.0160	2x2, 2-Lamp T8	LED Int. Divier Lamps, (2) 2^{2} Lamps	1,152	0.06	0.03	0.03	74	37	${ }^{77}$

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Flor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	Total kWh	$\begin{gathered} \text { Total kWh } \\ \text { Saved } \end{gathered}$
Roosevelt Schools NY	Centennial Averue Elementary School	${ }_{137} 2$		Classroom 2030	12	12	0.0710	0.0350	2x2, 2-Lamp 40 Biax	LED Retorofit Panel Kit, 2x, MLO	1,152	0.85	0.42	0.43	982	484	498
Roosevelt Schools NY	Centennial Averue Elementary School	1382		Classroom 2030	3	3	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	152	0.17	0.07	0.10	190	76	114
Rosesevelt Schools Nr	Centennial Averue Elementary School	1392		Classroom 2030	1	1	0.0640	80	2x2, 4-Lamp T8	LED Int. Diviver Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Averue Elementary School	1402		Classroom 2028	3	3	0.0550	0.0220	1xa, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centennial Avenue Elementary School	1412		Classroom 2028	12	12	0.0550	0.0220	1x4, 2-1amp 8	LED Int. Divier Lamps, (2) 4 Lamps	1,152	0.66	0.26	0.40	760	304	456
Roosevelt Schools MY	Centennial Averue Elementary School	1422		Classroom 2028	1	1	0.0640	0.0280	2x2, 4-Lamp ${ }^{\text {8 }}$	LED Int. Diviver Lamps, (4) 2 ${ }^{\text {L Lamps }}$	1,152	.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Averue Elementary School	1432		Batrrom 2028a	1	1	0.0640	0.0280	2x2, 4-Lamp T8	LED Int. Diviver Lamps, (4) 2 ${ }^{\text {Lampps }}$	2,400	0.06	0.03	0.04	154	67	${ }_{8}$
Roosevelt Schools MY	Centennial Avenue Elementary School	1442		Classroom 2026	3	3	0.0550	0.0220	1x4, 2-Lamp 8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centennial Avenue Elementary School	1452		Classroom 2026	12	12	0.0550	20	1x4, 2-Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps	1,152	0.66	0.26	. 40	760	304	456
Roosevelt Schools NY	Centennial Averue Elementary School	1462		Classroom 2026	1	1	0.0640	0.0280	2x2, 4-Lamp T8	LED Int. Diviver Lamps, (4) 2 ${ }^{\text {L Lamps }}$	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Avenue Elementary School	$147 / 2$		Storage 2026a	2	2	0.0560	0.0170	CF PL (2) 26w	LED Retrofit an Kit, 8 nch, HLO	600	0.11	0.03	0.08	67	20	47
Roosevelt Schools NY	Centennial Averue Elementary School	1482		Jc 2025	1	1	0.0550	0.0220	1x4, 2-Lamp т8	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Centennial Averue Elementary School	1492		Classroom 2023	16	16	0.0550	0.0220	1x4, 2-Lamp ${ }^{\text {8 }}$	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.88	0.35	0.53	1.014	406	608
Roosevelt Schools MY	Centennial Avenue Elementary School	1502		Classroom 2023	4	4	0.0550	0.0220	1x4, 2-Lamp 8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.22	0.09	0.13	253	101	152
Roosevelt Schools MY	Centennial Averue Elementary School	1512		Classroom 2023	1	1	0.0640	0.0280	2x2, 4-Lamp T8	LED Int. Diviver Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Averue Elementary School	1522		Batrrom 2023a	1	1	0.0640	0.0280	2x2, 4-Lamp ${ }^{\text {8 }}$	LED Int. Diviver Lamps, (4) $2^{\text {L Lamps }}$	2,400	0.06	0.03	0.04	154	67	86
Roosevelt Schools NY	Centennial Averue Elementary school	1532		Batrrom 2023	1	1	0.0640	0.0280	2x2, 4-1amp 8	LED Int. Diviver Lamps, (4) 2 Lamps	2.400	0.06	0.03	0.04	154	67	${ }_{6}$
Roosevelt Schools MY	Centennial Averue Elementary School	1542		Classroom 2020	10	10	0.0550	. 0222	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools NY	Centennial Averue Elementary School	1552		Classroom 2020	1	1	0.0640	0.0280	2x2, 4-Lamp T8	LED Int. Diviver Lamps, (4) $2^{\text {'Lamps }}$	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Avenue Elementary School	1562		Classroom 2020	2	2	0.0280	0.0160	FFL 26 w	LED Retroftit Round Kit, 5.5 h nch, NLO	1,152	0.06	0.03	0.02	${ }^{65}$	37	28
Roosevelt Schools NY	Centenial Avenue Elementary School	$157 / 2$		Jc 2019	1	1	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Centennial Averue Elementary School	$158 / 2$		Telecom Rm 2001	2	2	0.055	0.0220	1xa, 2-Lamp 8	LED Int. Diviver Lamps, (2) 4'Lamps	600	0.11	0.04	0.07	66	26	40
Roosevelt Schools NY	Centennial Avenue Elementary School	1592		Electrical Rm El2	1	1	0.0550	0.0220	1x4, 2-Lamp 8	LED Int. Diviver Lamps, (2) 4'Lamps	750	0.06	0.02	0.03	41	17	25
Roosevelt Schools NY	Centennial Avenue Elementary School	$160 / 2$		Hallway 2009 To 2002	15	15	0.0280	0.0160	CF PL 26 w	LED Retoffit Round Kit, 5.5 hmon , NLO	3,000	0.42	0.24	0.18	1,260	720	540
Roosevelt Schools NY	Centennial Averue Elementary School	1612		Halway 2009 To 2002	2	2	0.0280	0.0160	CFPL 26 W	LED Retoroft Round Kit, 5.5 hnch, NLO	3,000	0.06	0.03	0.02	168	96	72
Roosevelt Schools NY	Centennial Avenue Elementary School	1622		Hallway 2009 To 2002	11	11	0.0640	0.0280	2x2, 4-1amp 8	LED Int. Diviver Lamps, (4) 2'Lamps	3,000	0.70	0.31	0.40	2,112	924	1.188
Roosevelt Schools NY	Centennial Averue Elementary School	1632		Halway 2009 To 2002	2	2	0.0550	0.0220	1x4, 2-Lamp T8	LED int. Divive Lamps, (2) 4 Lamps, XL	3,000	0.11	0.04	0.07	330	132	198
Roosevelt Schools NY	Centennial Avenue Elementary School	1642		Hallway 2009 To 2002	2	2	0.0450	0.0220	1xx, 2-Lamp 7	LED Int. Driver Lamps, (2) $3^{\text {L Lamps, } \mathrm{XL}}$	3,000	0.09	0.04	0.05	270	132	${ }_{138}$
Roosevelt Schools NY	Centennial Averue Elementary School	1652		Hallway 2009 To 2002	3	3			Exti Sign - LED	will Not be Retofoft	8,760						
Roosevelt Schools NY	Centennial Avenue Elementary School	$166 / 2$		Hallway 2019 To 2030	9	9	0.0280	0.0160	FPL 26 w	LED Retoffit Round Kit, $5.5 \mathrm{Imch}, \mathrm{NLO}$	3,000	0.25	0.14	0.11	756	432	324
Roosevelt Schools NY	Centenial Avenue Elementary School	$167 / 2$		Hallway 2019 To 2030	3	3	0.0640	0.0280	2x2, 4-2amp T8	LED Int. Diver Lamps, (4) ${ }^{2}$ Lamps	3,000	0.19	0.08	0.11	576	252	324
Roosevelt Schools NY	Centennial Averue Elementary School	1682		Halway 2019 To 2030	16	16	0.0550	0.0220	1xa, 2-1amp 8	LED int. Driver Lamps, (2) 4 Lamps, XL	3,000	0.88	0.35	0.53	2.640	1,056	1.584
Roosevelt Schools NY	Centennial Avenue Elementary School	1692		Hallway 2019 To 2030	2	2	0.0450	0.0220	1x3, 2-Lamp T8	LED Mnt. Diver Lamps, (2) ${ }^{\text {a Lamps, } \mathrm{XL}}$	3,000	. 09	0.04	. 05	270	132	${ }_{138}$
Roosevelt Schools NY	Centennial Avenue Elementary School	$170{ }^{2}$		Halway 2019 To 2030	2	2			Exit Sign - Led	will Not be Retofoft	8,760						

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { Qty } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{aligned} & \text { Total Post } \\ & \text { kW } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total kWn Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools NY	Centennial Avenue Elementay School	1712		Halway 2019 To 2030 Display	10	10	0.0650	0.0110	Inc 65	LED Lamp, RPAR30, NLO	3,000	0.65	0.11	0.54	1,950	330	1,620
Soseveret Schools NY	Centennial Avenue Elementary chool	1722		Hallay By Libray	13	13	3380	0.0145	k4, 1-Lamp T5E	LED Int. Divier Lamp, (1) 4 T 5 HELamp	3,000	0.49	. 19	0.31	482	566	917
Sosevelt Schools NY	Centennial Avenue Elementary cchool	1732		Hallay By Libray	2	2	0.0180	0.0095	x2, 1-Lamp T5E	LED Int. Divier Lamp, (1) 2 ' 55 HELamp	3,000	0.04	0.02	0.02	108	57	51
Roosevelt Schools NY	Centennial Avenue Elementay School	1742		Halway By Libray	1	1	0.0280	0.0160	CF PL 26w	LED Retrofit Pund Kit. 5.5 h nch, NLO	3,000	0.03	0.02	0.01	84	48	36
Rosesevel Schools NY	Centennial Avenue Elementary cchool	1752		Hallay By Libray	2	2			Exit Sign - Led	will Not be Retroft	8.760						
Roosevelt Schools NY	Centennial Avenue Elementary school	1761		Classroom 1023	3	3	0.550	0.022	Lamp	LED int. Divier Lamps, (2) 4 Lamps	1,152	17	0.07	0.10	${ }^{190}$	76	114
Roosevelt Schools NY	Centennial Avenue Elementary cchool	1771		Classroom 1023	10	10	0.0550	0.0220	1x4, 2--amp T8	LED int. Diver Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools Nr	Centennial Avenue Elementary cchool	1781		Classroom 1023	1	1	0.0640	0.0280	2x, 4-Lamp T8	LED Int. Divier Lamps, (4) 2'Lamps	1,152	0.0	0.03	. 04	74	32	41
Sosevelt Schools NY	Centennial Avenue Elementary cchool	1791		throom 1023a	1	1	5940	0.0280	2, 4, -Lamp T8	LED int. Diver Lamps, (4) 2 Lamps $^{\text {L }}$	2,400	0.06	0.03	0.04	154	67	86
Roosevelt Schools NY	Centennial Avenue Elementary cchool	1801		Classroom 1021	3	3	0.0550	0.0220	1x4, -2-amp T8	LED int Diviver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centennial Avenue Elementary school	1811		Classroom 1021	10	10	0.0550	0.0220	x4, 2-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	1,152	55	0.22	0.33	${ }^{634}$	253	380
Roosevelt Schools Mr	Centennial Avenue Elementary cchool	1821		Classroom 1021	1	1	0.0640	0.0280	x2, 4-L-amp T8	LED Int. Diver Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Avenue Elementay School	1831		Jc 1020	1	1	0.0550	0.0220	1x4, -2-amp ${ }^{\text {d8 }}$	LEED int Diviver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Centennial Avenue Elementary school	1841		Office 1015	10	10	0.0710	0.0350	2x, 2--Lamp 40 Biax	LED Retrofit Panel Kt , 2x2, nLo	1,152	0.71	0.35	0.36	818	403	415
Roosevelt Schools Mr	Centennial Avenue Elementary chool	1851		Nurse 1008	2	2	0.0710	. 0350	2, 2-Lamp 40 Biax	LED Retroftit Panel Kt , 2x2, nLo	1,440	0.14	0.07	0.07	204	101	104
Roosevelt Schools NY	Centennial Avenue Elementay School	1861		Nurse 1008	2	2	0.0280	0.0160	CF PL 26w	LED Retrofit Pund Kit. 5.5 hnch , NLO	1,440	0.06	0.03	0.02	81	46	${ }^{35}$
Roosevelt Schools Nr	Centennial Avenue Elementary school	1871		Nurse 1008	3	3	0.0550	0.0220	X4, 2-Lamp T8	LED int. Diver Lamps, (2) 4 Lamps	1,440	17	0.07	0.10	${ }^{238}$	95	143
Roosevelt Schools Mr	Centennial Avenue Elementary chool	1881		Nurse 1013	2	2	0.0710	. 0350	20, 2-Lamp 40 Biax	LED Retrofit Panel Kt , 2x2, NLO	1,152	0.14	0.07	0.07	164	81	${ }^{83}$
Roosevelt Schools NY	Centennial Avenue Elementay School	1891		Nurse 1012	2	2	0.0320	0.0160	2×2, - - -amp 78	LEED Int. Diver Lamps, (2) 2 Lamps	1,152	0.06	0.03	0.03	74	${ }_{37}$	37
Roosevelt Schools Mr	Centennial Avenue Elementary school	1901		Nurse 1011	2	2	0.0320	0.0160	x2, 2 -Lamp T8	LED int. Divier Lamps, (2) 2 Lamps	152	06	0.03	0.03	${ }^{74}$	37	37
Roosevelt Schools Mr	Centennial Avenue Elementary cchool	1911		Batrrom 1008a	1	1	0.0640	0.0280	2x, 4-Lamp T8	LED int. Diver Lamps, (4) 2 Lamps	2,400	0.06	0.03	0.04	154	67	${ }_{86}$
Roosevelt Schools NY	Centennial Avenue Elementary cchool	1921		Classroom 1007	3	3	0.0550	0.0220	1xt, 2--amp T8	LED int. Diviver Lamps, (2) 4 Lamps	1,152	17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centennial Avenue Elementary cchool	1931		Classroom 1007	10	10	0.0550	0.0220	x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools NY	Centennial Avenue Elementary cchool	1941		Classroom 1007	1	1	0.0640	0.0280	2x, 4-Lamp T8	LED int. Diver Lamps, (4) 2'Lamps	1,152	0.06	0.03	0.04	${ }^{74}$	32	41
Roosevelt Schools NY	Centennial Avenue Elementay School	1951		Classroom 1006	3	3	0.0550	0.0220	1x4, -2-amp T8	LEE int Diviver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centennial Avenue Elementary School	1961		Classroom 1006	10	10	0.0550	0.0220	1x4, -- -amp T8	LED Int. Divier Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools NY	Centennial Avenue Elementary cchool	1971		Classroom 1006	1	1	0.0640	0.0280	$2 \times 2,4$-amp T8	LED int. Diver Lamps, (4) 2'Lamps	1,152	0.06	0.03	0.04	${ }^{74}$	32	41
Roosevelt Schools NY	Centennial Avenue Elementay School	1981		Classroom 1004	3	3	0.0550	0.0220	1x4, -2-amp ${ }^{\text {d8 }}$	LEE int Diviver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools Mr	Centennial Avenue Elementary School	1991		Classroom 1004	10	10	0.0550	0.0220	1x4, -- -amp T8	LED int. Diviver Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools NY	Centennial Avenue Elementary chool	2001		Classroom 1004	1	1	0.0640	0280	2, 4 -Lamp T8	LED Int. Diviver Lamps, (4) 2'Lamps	1,152	0.06	0.03	0.04	${ }^{74}$	32	41
Roosevelt Schools NY	Centennial Avenue Elementay School	2011		Main Office 1038	13	13	0.072	0.0210	CF PL (2) 32w	LeD Retrofit Can Kit, 10 Inch, NLO	2,200	0.94	0.27	0.66	2,059	601	1,459
Roosevelt Schools NY	Centennial Avenue Elementary School	2021		Main Office 1038	3	3	0.0710	0.0350	2x, 2-Lamp 40 Biax	LED Retrofit Panel Kt , 2x2, NLO	1.52	0.21	0.11	0.11	245	121	124
Roosevelt Schools NY	Centennial Avenue Elementary chool	2031		Main ffice 1038	3	3			Exit Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools NY	Centennial Avenue Elementay School	2041		Office 1037	4		0.0710	0.0350	2x2, 2-Lamp 40 Biax	LED Retroftit Panel $\mathrm{Kt,2} \mathrm{\times 2}$, NLO	1,760	0.28	0.14	0.14	500	246	253

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { aty } \\ \hline \end{gathered}$	$\begin{gathered} \text { Prooosed } \\ \text { Oty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ k w \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { Total Post } \\ & \mathrm{kW} \end{aligned}\right.$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	$\begin{aligned} & \text { Total kWh } \\ & \text { Pronosed } \end{aligned}$	Total kWh Saved
Roosevelt Schools NY	Centennial Averue Elementary School	205		Office 1036	4	4	0.0710	0.0350	2x2, -2-amp 40 Biax	LED Retorfit Panel Kit, 2x, MLO	1,760	0.28	0.14	0.14	500	246	253
Roosevelt Schools NY	Centennial Avenue Elementary School	206		Office 1035	2	2	0.0710	0.0350	2, 2-Lamp 40 Biax	LED Retoroft Panel Ki, 2x2, NLO	,760	0.14	0.07	0.07	250	123	127
Roosevelt Schools NY	Centennial Averue Elementary School	207		office 1034	4	4	0.0710	0350	Ip 40 Bia	LED Retoroft Panel Kit , 2x, , NLO	1,760	0.28	0.14	0.14	500	246	253
Roosevelt Schools NY	Centennial Averue Elementary School	208		Office 1033	4	4	0.0710	0.0350	2x2, -2-amp 40 Biax	LED Retorfit Panel Kit, 2x, NLO	1,760	0.28	0.14	0.14	500	246	253
Roosevelt Schools NY	Centennial Averue Elementary school	209		Cooy Room 1031	4	4	0.0710	0.0350	22, 2-Lamp 40 Biax	LED Retorfit Panel Kit , 2x, MLO	2.000	0.28	0.14	0.14	568	280	288
Roosevelt Schools NY	Centennial Averue Elementary School	210		Bathroom 1032	1	1	0.0710	502	mp 40 Biax	LED Retorfit Panel Kit 2x2, NLO	2.400	0.07	0.04	0.04	170	84	86
Roosevelt Schools NY	Centennial Averue Elementary School	211		Batroom 1040	1	1	0.0710	0.0350	2×2 2--Lamp 40 Biax	LED Retroit Panel Kit 2x2, NLO	2.400	0.07	0.04	0.04	170	84	86
Roosevelt Schools NY	Centennial Avenue Elementary School	212		Classroom 1030	3	3	0.055	0.0220	1x, 2--2amp T8	LED Int. Diviver Lamps, (2) 4'Lamps	1,152	0.17	. 07	0.10	190	76	114
Roosevelt Schools NY	Centennial Avenue Elementary School	213		sssoom 1030	10	10	0.0550	0.0220	4, 2-Lamp 78	LED Int. Divier Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools NY	Centennial Averue Elementary School	214		Classroom 1030	1	1	0.0640	0.0280	2×2.4-Lamp T8	LED Int. Diviver Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Avenue Elementary School	215		Classroom 1028	3	3	0.0550	0.0220	1x, 2--2amp T8	LED Int. Divier Lamps, (2) 4'Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centennial Avenue Elementary School	216		Classroom 1028	10	10	0.0550	0.0220	2-2.amp T8	LED Int. Divier Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools NY	Centennial Averue Elementary School	217		Classroom 1028	1	1	0.0640	0.0280	2x2, 4-Lamp T8	LED Int. Diviver Lamps, (4) $2^{\text {L }}$ Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Avenue Elementary School	218		Classroom 1026	2	2	0.0550	0.0220	1x, 2--2amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.11	0.04	0.07	127	51	76
Roosevelt Schools NY	Centennial Avenue Elementary School	219		Classsoom 1026	10	10	0.0550	. 0222	-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	1,152	0.55	0.22	0.33	634	253	380
Roosevelt Schools NY	Centennial Avenue Elementary School	220		Classroom 1026	1	1	0.0640	0.0280	2×2, 4-Lamp T8	LED Int. Diviver Lamps, (4) $2^{\text {L Lamps }}$	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Averue Elementary school	221		Office 1034	2	2	0.0710	0.0350	22, 2-Lamp 40 Biax	LED Retoroit Panel Kit , 2x, NLO	1,152	0.14	0.07	. 07	164	81	83
Roosevelt Schools NY	Centennial Avenue Elementary school	222		Classroom 1056	3	3	0.0550	. 0220	x4, 2-Lamp 78	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centennial Avenue Elementary School	223		Classroom 1056	12	12	0.0550	0.0220	1x, 2-2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.66	0.26	0.40	760	304	456
Roosevelt Schools NY	Centennial Averue Elementary School	224		Classroom 1056	1	1	0.0640	0.0280	22,4-2amp T8	LED Int. Diviver Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Avenue Elementary School	225		Batroom 1056a	1	1	0.0640	0.02802	22, 4 -Lamp T8	LED Int. Diviver Lamps, (4) 2 Lamps	2.400	0.06	0.03	0.04	154	67	86
Roosevelt Schools NY	Centennial Averue Elementary School	226		Classroom 1054	4	4	0.0550	0.0220	1x, 2--Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.22	0.09	0.13	253	101	152
Roosevelt Schools NY	Centennial Avenue Elementary School	227		Classroom 1054	12	12	0.0550	0.0220	1x, 2--Lamp T8	LED Int. Divier Lamps, (2) 4'Lamps	1,152	0.66	0.26	0.40	760	304	456
Roosevelt Schools NY	Centennial Averue Elementary School	228		Classroom 1054	1	1	0.0640	0.0280	2×2.4-Lamp T8	LED Int. Diviver Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Avenue Elementary School	229		Classroom 1052	3	3	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centennial Avenue Elementary School	230		Classroom 1052	12	12	0.0550	0.0220	1x, 2--Lamp T8	LED Int. Divier Lamps, (2) 4'Lamps	1,152	0.66	0.26	0.40	760	304	456
Roosevelt Schools NY	Centennial Averue Elementary School	231		Classroom 1052	1	1	0.0640	0.0280	$2 \times 2,4$ - amp T8	LED Int. Diviver Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Avenue Elementary School	232		Batrrom 1052a	1	1	0.0640	0.0280	2x2, 4-Lamp T8	LED Int. Diviver Lamps, (4) 2 Lamps	2,400	0.06	0.03	0.04	154	67	86
Roosevelt Schools NY	Centennial Averue Elementary School	233		Classroom 1050	4	4	0.0550	0.0220	1x, 2--Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	1,152	0.22	0.09	0.13	253	101	152
Roosevelt Schools NY	Centennial Avenue Elementary School	234		Classroom 1050	12	12	0.0550	0.0220	1x4, 2-Lamp T8	LeD Int Diviver Lamps, (2) 4 Lamps	1,152	0.66	0.26	0.40	760	304	456
Roosevelt Schools NY	Centennial Avenue Elementary School	235		Classroom 1050	1	1	0.0680	0.0280	2x, 4-L-amp T8	LED Int. Diviver Lamps, (4) $2^{\text {L Lamps }}$	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Averue Elementary School	236		Batrrom 1050a	1	1	0.0640	0.0280	2x2, 4-Lamp T8	LED Int. Diviver Lamps, (4) 2 Lamps	2,400	0.06	0.03	0.04	154	67	${ }_{6}$
Roosevelt Schools NY	Centennial Avenue Elementary School	237		Classroom 1048	3	3	0.0550	0.0220	114, 2-Lamp T8	LED Int. Diver Lamps, (2) 4'Lamps	1,152	0.17	0.07	0.10	190	76	114
Roosevelt Schools NY	Centennial Avenue Elementary School	238		Classoom 1048	12	12	0.0550	0.0220	1x4, 2-Lamp 8	LeD Int Diviver Lamps, (2) 4 Lamps	1,152	0.66	0.26	0.40	760	304	456

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	Total kwn Prooosed	$\begin{gathered} \text { Total kWh } \\ \text { Saved } \end{gathered}$
Roosevelt Schools NY	Centennial Averue Elementary School	239		Classroom 1048	1	1	0.0640	0.0280	2x2, 4-Lamp T8	LED Int. Diviver Lamps, (4) 2^{1} Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Avenue Elementary School	240		Jc 1088a	1	1	0.055	0.020	x4, 2-Lamp 78	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Sosevell Schools NY	Centennial Avenue Elementary School	241		nge 1046	3	3	0.0710	O350 2	mp 40 Biax	LED Rerofitit Panel Ki, 2x2, MLO	1,440	0.21	0.11	0.11	307	151	156
Roosevelt Schools NY	Centennial Averue Elementary School	242		Lounge 1046	6	6	288	0.0110	x4, 1-L-Lamp 8	LED Int. Diviver Lamp, (1) 4 Lamp, XL	1.440	0.17	0.07	0.10	242	95	147
Roosevelt Schools NY	Centennial Averue Elementary school	243		Classroom 1045	12	12	0.0550	0.0220	1x4, 2--amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.66	0.26	0.40	760	304	456
Roosevelt Schools NY	Centennial Averue Elementary School	244		Classroom 1045	1	1	0.0640	2	amp T8	LED Int. Diviver Lamps, (4) 2 Lamps	1,152	0.06	0.03	.04	74	32	41
Roosevelt Schools NY	Centennial Averue Elementary School	245		Batrroom 1045a	1	1	0640	0.0280	$2 \times 2,4$ - amp T8	LED Int. Diviver Lamps, (4) 2 Lamps	2,400	0.06	0.03	0.04	154	67	86
Roosevelt Schools NY	Centennial Avenue Elementary School	246		Classroom 1042	3	3	0.055	0.0220	1x, 2--2amp T8	LED Int. Divier Lamps, (2) 4 Lamps	1,152	0.17	. 07	0.10	190	76	114
Roosevelt Schools NY	Centennial Avenue Elementary School	247		Classroom 1042	12	12	0.0550	222	4, 2-L-2mp T8	LED Int. Divier Lamps, (2) 4 Lamps	1,152	0.66	0.26	0.40	760	304	456
Roosevelt Schools NY	Centennial Averue Elementary School	248		Classroom 1042	1	1	0.0680	0.0280	2×2.4-Lamp T8	LED Int. Diviver Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	74	32	41
Roosevelt Schools NY	Centennial Avenue Elementary School	249		Telecom Rm 1045a	2	2	0.0550	0.0220	1x, 2--2amp T8	LED Int. Divier Lamps, (2) 4'Lamps	600	0.11	0.04	. 07	66	26	40
Roosevelt Schools NY	Centennial Avenue Elementary School	250		Electrical Rm El3	1	1	0.0550	0.0220	amp $\mathrm{T}^{\text {P }}$	LED Int. Divier Lamps, (2) 4 Lamps	750	0.06	0.02	0.03	41	17	25
Roosevelt Schools NY	Centennial Averue Elementary School	251		Hallway 1023 To 1004	14	14	0.0280	0.0160	CF PL 26 w	LED Retoroft Round Kit, 5.5 hnch, NLO	3,000	0.39	0.22	0.17	1,176	672	504
Roosevelt Schools NY	Centennial Avenue Elementary School	252		Halway 1023 To 1004	1	1	0.0280	0.0160	CF PL 26w	LED Retoroft Round Kit, 5.5 h nch, NLO	3,000	0.03	0.02	0.01	84	48	36
Roosevelt Schools NY	Centennial Avenue Elementary School	253		Halway 1023 To 1004	8	8	0.0640	0.0280	Lamp T8	LED Int. Diver Lamps, (4) 2^{2} Lamps	3.000	0.51	0.22	0.29	1.536	672	${ }_{864}$
Roosevelt Schools NY	Centennial Avenue Elementary School	254		Hallway 1023 To 1004	2	2	0.0550	0.0220	1x, 2-2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XL	3,000	0.11	0.04	0.07	330	132	198
Roosevelt Schools NY	Centennial Averue Elementary school	255		Halway 1023 To 1004	2	2	0.0450	0.0220	1x, 2--Lamp T8	LED int. Driver Lamps, (2) ${ }^{\text {L Lamps, XL }}$	3,000	0.09	0.04	0.05	270	132	${ }_{138}$
Roosevelt Schools NY	Centennial Averue Elementary School	256		Halway 1023 To 1004	3	3			Exit Sign - Led	will Not be Retofoft	8,760						
Roosevelt Schools NY	Centennial Avenue Elementary School	257		Hallway 1045 To 1052	9	9	0.0280	0.0160	CF PL 26 w	LED Retoroft Round Kit, 5.5 ncon, NLO	3,000	0.25	0.14	0.11	${ }_{75}$	432	324
Roosevelt Schools NY	Centennial Averue Elementary School	258		Halway 1045 To 1052	5	5	0.0640	0.0280	22, 4 -Lamp T8	LED Int. Diviver Lamps, (4) 2 Lamps	3,000	0.32	0.14	0.18	960	420	540
Roosevelt Schools NY	Centennial Avenue Elementary School	259		Hallway 1045 To 1052	12	12	0.0550	0.0220	1x, 2--Lamp T8	LED int. Driver Lamps, (2) 4 Lamps, XL	3,000	0.66	0.26	0.40	1.980	792	1.188
Roosevelt Schools NY	Centennial Averue Elementary School	260		Hallway 1045 To 1052	2	2			Exts Sign - Led	will Not be Retorfit	8,760						
Roosevelt Schools NY	Centennial Avenue Elementary School	261		Hallway 1045 To 1052 Display	8	8	0.0650	0.0110	65w	LED Lamp, RPAR30, NLo	3,000	0.52	0.09	${ }_{0} 0.43$	1.560	264	1,296
Roosevelt Schools NY	Centennial Avenue Elementary School	262		Lobby L1	10	10	0.056	0.0170	CFPL (2) 26 w	LED Retefofit an Kit, 8 nch, HLO	2.400	0.56	0.17	0.39	1.344	408	${ }_{936}$
Roosevelt Schools NY	Centennial Avenue Elementary School	263		Loboy L2	12	12	0.0550	0.0220	1x4, 2-Lamp $\mathrm{TB}^{\text {d }}$	LED Int. Driver Lamps, (2) 4 Lamps, XL	2,400	0.66	0.26	0.40	1.584	634	950
Roosevelt Schools NY	Centennial Avenue Elementary School	264		Lobob L2	6	6	0.0450	0.0220	1x, 2--Lamp T8	LED Int. Driver Lamps, (2) ${ }^{\text {L Lamps, XL }}$	2.400	0.27	0.13	0.14	648	317	331
Roosevelt Schools NY	Centennial Avenue Elementary School	265		Loboy L2	6	6	0.0280	0.0160	CFPL 26 w	LED Retoroft Round Kit. 5.5 l nch, MLO	2.400	0.17	0.10	0.07	403	230	173
Roosevelt Schools NY	Centennial Averue Elementary School	266		Loboy L2	18	18	0.0380	0.0145	1x4, 1-LILmp T5E	LED Int. Driver Lamp, (1) 4 ' 5 HELamp	2,400	0.68	0.26	0.42	1,642	626	1.015
Roosevelt Schools NY	Centennial Averue Elementary School	267		Lobob L2	6	6	0.0180	0.0095	1x2, 1-Lamp T5E	LED Int. Driver Lamp, (1)2 ${ }^{\text {2 }}$ T HE Lamp	3,000	0.11	0.06	0.05	324	171	153
Roosevelt Schools NY	Centennial Averue Elementary School	268		Lobby L2	4	4			Exit Sign - Led	will Not be Retofoft	8,760						
Roosevelt Schools NY	Centennial Averue Elementary School	269		Cafeeria 1064	30	30	0.0280	0.0160	CF PL 26 w	LED Retoroft Round Kit, 5.5 nch, , NLO	5,725	0.84	0.48	0.36	4.809	2,748	2.061
Roosevelt Schools NY	Centennial Averue Elementary School	270		Cafeeria 1064	62	62	0.0380	0.0145	1x4, 1-Lamp T5E	LED Int. Driver Lamp, (1) 4 T 5 HE Lamp	5,725	2.36	0.90	1.46	13,488	5,147	8,341
Roosevelt Schools NY	Centennial Avenue Elementary School	271		Cafeeteria 1064	6	6	0.0180	0.0095	1x2, 1-Lamp TSE	LED Int. Diverer Lamp, , (1) 2' T5 HE Lamp	5,725	0.11	0.06	. 05	618	326	292
Roosevelt Schools NY	Centennial Avenue Elementary School	272		Cafeeteria 1064	3	3			Extsisig - Leo	will Not be Retoroft	8,760						

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { Qty } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \mathrm{kW} \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total kWn Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools NY	Centennial Avenue Elementay School	2731		Jc 1065	2	2	0.0550	0.0210	2×2.2-Lamp U T8	LED Int. Diviver Lamps, (3) $2^{\text {L Lamps, } 2 \times 2 \times \text { Kit }}$	600	0.11	0.04	0.07	66	25	41
Soseveret Schools NY	Centennial Avenue Elementary School	2741		Faculy Dining 1064	20	20	0.0280	0.0160	CF PL 26w	LED Retroftrit ound Kit. 5.5 h nch, NLO	5,725	0.56	. 32	0.24	.206	,832	374
Sosevelt Schools NY	Centennial Avenue Elementary cchool	2751		Faculy Dining 1064	2	2			Exit Sign - Led	will Not be Retroft	8,760		.		.		
Roosevelt Schools NY	Centennial Avenue Elementay School	2761		Sering Line 1067	8	8	0.0550	0.0210	$2 \times 2,2$-Lamp U ד 8	LED int. Diver Lamps, (3) 2 L Lamps, 2x2 Kit	864	0.44	0.17	0.27	380	145	235
Rosesevel Schools NY	Centennial Avenue Elementary cchool	2771		Sering Line 1067	1	1			Exit Sign - Led	will Not be Retroft	8.760						
Roosevelt Schools NY	Centennial Avenue Elementary school	2781		Kithen 1068	11	11	0.0550	0.0210	x2, 2-Lamp U T	LED Int. Diver Lamps, (3) 2 Lamps, $2 \times 2 \mathrm{kit}$	864	61	0.23	0.37	523	200	${ }^{323}$
Roosevelt Schools NY	Centennial Avenue Elementary cchool	2791		Kithen Hoods 1068	3	3	0.0550	0.0220	1x4, 2--amp T8	LED int Diviver Lamps, (2) 4 Lamps	5,725	0.17	0.07	0.10	945	378	567
Roosevelt Schools Nr	Centennial Avenue Elementary cchool	2801		Kithenen 1068	4	4			Exit Sign - Led	will Not be Retroft	8,760						
Sosevelt Schools NY	Centennial Avenue Elementary cchool	2811		Cooler 1069	6	6	0.070	0.0220	4, 2-Lamp T12	LeD lnt. Divier Lamps, (2) 4 Lamps, XL	750	42	0.13	0.29	315	99	216
Roosevelt Schools NY	Centennial Avenue Elementray cchool	2821		Storae 1070	4	4	0.0550	0.0210	2x2, 2-Lamp U 8	LeD int. Diver Lamps, (3) 2 ' Lamps, $2 \times 2 \mathrm{kt}$	750	0.22	0.08	0.14	165	63	102
Roosevelt Schools NY	Centennial Avenue Elementary cchool	2831		Office 1071	2	2	0.0710	0.0350	2x2, -2-amp 40 Biax	LED Retrofit Panel Kt , 2x2, nLo	864	14	0.07	0.07	123	60	62
Roosevelt Schools Mr	Centennial Avenue Elementary cchool	2841		Telecom Rm 1072	2	2	0.0550	0.0220	4, 2 -L-amp T8	LED int. Diver Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	${ }_{6}$	26	40
Roosevelt Schools NY	Centennial Avenue Elementary School	2851		Office 1073	2	2	0.0550	0.0210	2×2.2 2-Lamp ¢ 8	LED int. Diver Lamps, (3) 2 L Lamps, 2x2 kt	3,200	0.11	0.04	0.07	352	134	218
Roosevelt Schools NY	Centennial Avenue Elementary School	2861		Storae 1073a	1	1	0.0170	0.0080	1x2, - - -amp T8	LED Int. Diver Lamp, (1) 2 L Lamp	750	0.02	0.01	0.01	13	6	7
Roosevelt Schools Mr	Centennial Avenue Elementary chool	2871		Batrroom, Women's 1074	5	5	0.0280	0.0090	PL 26w	LED Retrofit Can Kit, 6 hnch, NLO	2,400	0.14	0.05	0.10	336	108	228
Roosevelt Schools NY	Centennial Avenue Elementay School	2881		Bathrom, Mer's 1075	5	5	0.0280	0.0090	CF PL 26w	LED Retrofit Can Kit. 6 hnch, NLO	1,760	0.14	0.05	0.10	246	79	167
Roosevelt Schools Nr	Centennial Avenue Elementary chool	2891		Staft Lockers Women's 1075	4	4	0.0280	0.0090	L26w	LED Retrofit Can Kit, 6 nch, MLO	2,400	0.11	0.04	0.08	${ }^{269}$	86	182
Roosevelt Schools NY	Centennial Avenue Elementary chool	2901		Staff Batroom Women's 1076	4	4	0.0280	. 0090	PL26w	LED Retrofit Can Kit, 6 nch, MLO	2,400	0.11	0.04	0.08	269	86	182
Roosevelt Schools NY	Centennial Avenue Elementay School	2911		Staft Lockers Mer's 1078	4	4	0.0280	0.0090	CF PL 26 w	LED Retrofit Can Kkt, 6 nch, MLO	2,400	0.11	0.04	0.08	269	86	182
Roosevelt Schools Mr	Centennial Avenue Elementary school	2921		Staff Batrrom Men's 1079	4	4	0.0280	0.0090	26w	LED Retrofit Can Kit, 6 nch, MLO	2.400	0.11	. 04	0.08	${ }^{269}$	86	182
Roosevelt Schools Mr	Centennial Avenue Elementary cchool	2931		Jc 1080	2	2	0.0550	0.0220	1x4, 2-Lamp T8	LED int. Diver Lamps, (2) 4 Lamps	750	0.11	0.04	0.07	83	33	50
Roosevelt Schools NY	Centennial Avenue Elementary cchool	2941		Receiving 1082	3	3	0.0950	0.0300	1xat, 2-Lamp $\mathbf{~ ¢ , ~ H ~}$	LED Int. Diviver Lamps, (2) 4 Lamps, HLo, xL	600	0.29	0.09	0.20	171	54	117
Roosevelt Schools NY	Centennial Avenue Elementary cchool	2951		Hallway 1064 To 1082	6	6	0.0480	0.0210	2x, 3 - -amp T8	LED Int. Divier Lamps, (3) 2'Lamps	2.400	0.29	0.13	0.16	691	302	389
Roosevelt Schools NY	Centennial Avenue Elementary cchool	2961		Halway 1064 To 1082	7	7	0.0280	0.0160	PLL 26 w	LED Retrofit Rund Kit. 5.5 lnch , NLO	2,40	0.20	0.11	0.08	470	269	202
Roosevelt Schools NY	Centennial Avenue Elementay School	2971		Halway 1064 To 1082	21	21	0.0280	0.0160	CFPL 26w	LED Retrofit Pund Kit. 5.5 hnch , NLO	2,400	0.59	0.34	0.25	1,411	806	605
Roosevelt Schools NY	Centennial Avenue Elementary School	2981		Hallway 1064 To 1082	7	7			Exit Sign - Led	will Not be Retroft	8.760						
Roosevelt Schools NY	Centennial Avenue Elementary cchool	2991		Hallway 1064 To 1082 Display	1	1	0.0450	0.022	1x3, 2-Lamp T8	LED int. Diver Lamps, (2) $3^{\text {L Lamps }}$	3,750	0.05	0.02	0.02	169	83	${ }_{6}$
Roosevelt Schools NY	Centennial Avenue Elementay School	3001		Locker Rm, Women's 1092	2	2	0.0710	0.0350	2x, 2-Lamp 40 Biax	LED Retroft Panel $\mathrm{Kt,2}$ 2x2, NLO	2.000	0.14	0.07	0.07	284	140	144
Roosevelt Schools NY	Centennial Avenue Elementary School	3011		Halway Gym Women's	2	2	0.0280	0.0160	FPL 26 w	LED Retroffit Round Kit. 5.5 h nch, N. NL	2.400	0.06	0.03	0.02	134	77	58
Roosevelt Schools NY	Ceniennial Avenue Elementary School	3021		Office 1089	3	3	0.055	0.0220	1x4, 2-Lamp T8	LeD Int. Diviver Lamps, (2) 4 Lamps	2.500	0.17	0.07	0.10	413	165	248
Roosevelt Schools NY	Centennial Avenue Elementay School	3031		Stage 1087	3	3	0.0550	0.0220		LED int Diviver Lamps, (2) 4 Lamps	2.500	0.17	0.07	0.10	413	165	248
Roosevelt Schools NY	Centennial Avenue Elementary School	3041		Stage 1087	4	4	0.0550	0.022	1x4, 2-Lamp T8, BB	LED Linear Lamp Kit, (2) 4 Lamps, BB	2,500	0.22	0.09	0.13	550	220	330
Roosevelt Schools NY	Centennial Avenue Elementary chool	3051		Locker Rm, Women's 1083	2	2	0.0710	0.0350	${ }^{22,2-L a m p ~} 40$ Biax	LED Retorotit Panel Ki, 2x2, NLO	2.000	14	0.07	0.07	${ }^{284}$	140	144
Roosevelt Schools NY	Centennial Avenue Elementary School	3061		Halway Gym Mer's	2	2	0.0280	0.0160	CF PL 26w	LED Retroftit Round Kit, 5.5 h nch, NLO	2.400	0.06	0.03	0.02	134	77	58

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Buiding Name	Index	Flor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Description	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total KWh Existing	Total kWh	$\begin{gathered} \text { Total kWh } \\ \text { Saved } \end{gathered}$
Roosevelt Schools NY	Centennial Avenue Elementary School	3071		Office 1086	3	3	0.055	0.0220		LED int. Diver Lamps, (2) 4 Lamps	2.500	0.17	0.07	0.10	413	165	248
Roosevelt Schools Nr	Centennial Avenue Elementar School	3081		Gym 1064	2	2	0.0280	0.0160	PL 26w	LED Retoroft Round Kit, 5.5 hnch , NLO	500	0.06	0.03	0.02	${ }^{140}$	80	60
Roosevelt Schools NY	Centennial Avenue Elementar School	3091		Gym 1064	16	16	2880	0.1040	CFPL (8) 32W	LED High Bay, 17 K Lumens, 2x2, OSF, WG, HCP	500	4.61	${ }_{6} 6$	2.94	${ }^{11,520}$	4,160	7,360
Roosevelt Schools NY	Centennial Avenue Elementary School	3101		Gym 1064	4	4			Extitign - Led	will Not be Retroft	8,760						
Roosevelt Schools Nr	Centennial Avenue Elementar School	311 B		Storage 1064a	1	1	0.0550	0.022	1x4, -2-amp T8	LED int. Diviver Lamps, (2) 4 Lamps, XL	600	0.06	0.02	0.03	${ }^{33}$	13	20
Dosesevel Schools NY	Centennial Avenue Elementary School	312 B		Storage 1064b	1	1	0.0550	0.022	1x4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps, XL	600	0.06	0.02	0.03	${ }^{33}$	13	20
Roosevelt Schools NY	Centennial Avenue Elementary School	313 B		Eevator Looby	2	2	0.0550	0.022	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	6^{6}	26	40
Roosevelt Schools Nr	Centennial Avenue Elementar School	314 B		Evator Machine Room	2	2	0.0550	0.022	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	${ }_{66}$	26	40
Roosevelt Schools NY	Centennial Avenue Elementary School	315 B		Storage	12	12	0.055	20	4, 2-L-Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps	750	0.66	0.26	0.40	495	198	297
Roosevelt Schools NY	Centennial Avenue Elementary School	316 B		Telecom Rm	8	8	0.0550	0.022	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.44	0.18	0.26	264	106	158
Roosevelt Schools NY	Centennial Avenue Elementar School	317 B		Electrical Rm	8	8	0.0550	0.0220	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.44	0.18	0.26	${ }^{264}$	106	158
Roosevelt Schools NY	Centennial Avenue Elementary School	318 B		Electrical Rm	2	2	0.050	0.050	og Eyes, 2 x	will Not be Retrofit	30	0.10	0.10	-	3	3	
Roosevelt Schools NY	Centennial Avenue Elementary School	319 B		Storage	1	1	0.0280	0.0110	1x4, --Lamp T8	LED int. Diver Lamp, (1) 4 Lamp	750	0.03	0.01	0.02	${ }^{21}$	8	13
Roosevelt Schoos NY	Centennial Avenue Elementar School	320 B		Work Shop	12	12	0.0550	0.0220	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	750	0.66	0.26	0.40	${ }_{495}$	198	297
Roosevelt Schools Nr	Centennial Avenue Elementary School	321.18		Boiler Room	12	12	0.0550	0.022	--Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	750	0.66	0.26	0.40	495	198	297
Roosevelt Schoos NY	Centennial Avenue Elementar School	322 B		Halway	14	14	0.0550	0.0220	1x4, --1amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	3,750	0.77	0.31	0.46	2,888	1,155	1,733
Rooseenet Schools NY	Centennial Avenue Elementar School	323 B		Ilway	3	3			Exit Sign - LED	will Not be Retofot	8,760						
Roosevelt Schools NY	Centennial Avenue Elementar School	324 sw		South Basement Staireell	4	4	0.0550	0.0220	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	3,750	0.22	0.09	0.13	825	330	495
Roosevelt Schools NY	Centennial Avenue Elementar School	325 sw		North Basement Staimell	3	3	0.0550	0.0220	1x4, --Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	3,750	0.17	0.07	0.10	619	248	371
Roosevelt Schools Nr	Centennial Avenue Elementar School	326 sw		Staimel1	5	5	0.0550	0.022	1x4, -2-amp T8	LED Int Diviver Lamps, (2) 4 Lamps	3,750	0.28	0.11	0.17	1,031	413	619
Roosevelt Schools NY	Centennial Avenue Elementar School	327 sw		Staimel1	2	2	0.0550	0.0220	1x4, --Lamp T8	LEE Int. Driver Lamps, (2) 4 Lamps	3,750	0.11	0.04	0.07	413	165	248
Roosevelt Schools NY	Centennial Avenue Elementar School	328 sw		Stairell 1	3	3			Exti Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools NY	Centennial Avenue Elementar School	329 sw		Staimel2	4	4	0.0550	0.0220	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	3,750	0.22	0.09	0.13	25	330	495
Roosevelt Schools NY	Centennial Avenue Elementar School	330 sw		Staireel2			0.0550	0.0220	1x, ,--Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps, H1	3,750	0.06	0.02	0.03	206	83	124
Roosevelt Schools NY	Centennial Avenue Elementar School	331 sw		Stairvel2	2	2			Exti Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools NY	Centennial Avenue Elementary School	332 sw		Staimel3	1	1	0.0560	0.0170	CF PL (2) 26w	LED Retrofit Can Kit, 8 nch, HLO	3,750	0.06	0.02	0.04	210	64	146
Roosevelt Schoos NY	Centennial Avenue Elementar School	333 sw		Stairell 3	3	3	0.0550	0.0220	1x4, -2-amp T8	LED int. Diviver Lamps, (2) 4 Lamps	3,750	0.17	0.07	0.10	619	248	371
Roosevelt Schools NY	Centennial Avenue Elementar School	334 sw		Stairwel3	1	1	0.0550	0.0220	1x4, --Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	3,750	0.06	0.02	0.03	206	${ }^{83}$	124
Roosevelt Schools NY	Centennial Avenue Elementar School			Staimel3	1		0.0550	0.0220	1x4, -2-amp T8	LED Int. Diver Lamps, (2) 4 4 Lamps, H1	3,750	0.06	0.02	0.03	206	83	124
Roosevelt Schoos NY	Centennial Avenue Elementar School	336 sw		Staimel3	2	2			Exit Sign - Led	will Not be Retofoft	8,760						
Roosevelt Schoos NY	Centennial Avenue Elementar School	337 sw		Stairel\| 4	9	9	0.0550	0.0220	1x4, --Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	3,750	0.50	0.20	0.30	1,856	743	1,114
Roosevelt Schools NY	Centennial Avenue Elementar School	338 sw		Stairvel\| 4	2	2			Exit Sign - Led	will Not be Retofoft	8,760						
Roosevelt Schools NY	Centennial Avenue Elementar School	3391		Storage 1035	4	4	0.0550	0.0220	1x4, -2-mamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	750	0.22	0.09	0.13	65	66	99
Roosevelt Schools NY	Centennial Avenue Elementar School	342 Ext		Wak Way Poles P	4		0.0500	0.0500	14x, ,--Lamp T12, Ho	will Not be Retoroft	4,380	0.20	0.20		876	876	

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { aty } \\ \hline \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { aty } \end{gathered}$	Existing kw	Proposed kw	Existing Description	Proposed Description	Total Hours	$\begin{gathered} \text { Total Pre } \\ k w \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Total Post } \\ \text { kW } \\ \hline \end{array}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \\ \hline \end{gathered}$	Total kWn Existing	Total kWh Proposed	Total kWh Saved
Roosevelt Schools NY	Centennial Avenue Elementary School	343 E		Parking Lot Pole Lcc	10	10	0.0500	0.0500	LED Fixure, 50 W	will Not be Retroft	4,380	0.50	0.50		2,90	2,90	
Roosevelt Schools Nr	Centennial Avenue Elementar School	344		Wall Pack L	17	17	0.050	0.050	LED Fixure, 50 W	will Not be Retoroft	4,380	85	0.85		.723	3,723	
Roosevelt Schools NY	Centennial Avenue Elementary School	345		Canopy Cans Cnp	7	7	0.0900	0.0250	H770w	LED Lamp, ALLine, , HLo, HID	4.380	0.63	0.18	0.46	2,759	767	1.993
Roosevelt Schools NY	Centennial Avenue Elementar School	346 E		Egress Door, No Emergency Light N	10	10		.0280	ew Layout	LED Wallpack, Forward Throw, 2000 Lumens, BB, MW30	4,380		0.28	(0.28)		1,226	(1,226)
Rosesevel Schools NY	Centennial Avenue Elementar School	347 E		Recessed Canopy	1	1	0.0360	0.0200	${ }^{\text {PL } 32 \mathrm{~W}}$	LED Canopy, 2000 Lumens, MM, XL	380	0.04	0.02	0.02	${ }_{158}$	88	70
Roosevelt Schools NY	Centennial Avenue Elementary School	348 E		Suiding Wall BoxM	20	20	0.1300	0.0250	MH 100w	LED Lamp, ALLine, HLO, HID	4,380	2.60	0.50	2.10	${ }^{11,388}$	2,90	9,98
Roosevelt Schools NY	Centennial Avenue Elementary School	349 E		Ground Floods F	2	2	0.1500	0.0300	alogen 150w	LEE Flood Light -3,00 Lumens, Photocell, ${ }^{\text {kN }}$	4,380	${ }_{0} .30$	0.06	0.24	1,314	263	1,051
Roosevelt Schools NY	Centennial Avenue Elementar School	3501		wLayut	47	47			New Layout	No Retroft	8,760						
Roosevelt Schools NY	Roosevelt tigh School	2		Classroom A205	12	12	0.0534	0.0220	4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2.119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools NY	Roosevelt tigh School	22		Classroom A207	12	12	.0.054	0.0220	x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2.119	64	0.26	. 38	1,358	559	798
Roosevelt Schools NY	Roosevelt tigh School	2		Classroom A209	12	12	0.0534	0.0220	1xt, --2amp T8	LED Int. Divier Lamps, (2) 4 Lamps	2.119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools NY	Roosevelt tigh School	42		Classroom A211	12	12	0.0534	0.0220	x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2.119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools NY	Roosevelt thigh School	52		Classroom A213	11	11	0.054	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2.119	59	0.24	0.35	1,245	513	${ }_{72}$
Roosevelt Schools NY	Roosevelt tigh School	62		Classroom A213b	1	1	0.0534	0.0220	1xt, --2amp T8	LED Int. Divier Lamps, (2) 4 Lamps	3,000	0.05	0.02	0.03	160	66	94
Roosevelt Schools Mr	Roosevelt tigh School	2		Classroom A215	11	11	0.0534	0.022	x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2.119	0.59	0.24	0.35	1,245	513	732
Roosevelt Schools NY	Roosevelt thigh School	82		Classroom A210	12	12	0.0534	0.0220	1x4, -2-amp ${ }^{\text {d8 }}$	LED Int. Diviver Lamps, (2) 4 Lamps	2.119	64	0.26	0.38	1,358	559	798
Roosevelt Schools Mr	Roosevelth tigh School	92		Classroom A208	12	12	0.0534	0.0220	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2.119	64	0.26	0.38	1,358	559	798
Roosevelt Schools NY	Roosevelt tigh School	102		Classroom A206	12	12	0534	. 0220	X4, 2-L-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	2,119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools NY	Roosevelt tigh School	112		Classroom A204	12	12	0.0534	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2.119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools NY	Roosevelt tigh School	122		Classroom A202	12	12	0.0534	0.0220	1xt, --2amp T8	LED Int. Divier Lamps, (2) 4 Lamps	2,119	. 64	0.26	0.38	, ,358	559	798
Roosevelt Schools NY	Roosevelt High School	132		Classroom A200	15	15	0.0534	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2,119	0.80	0.33	0.47	1,697	699	998
Roosevelt Schools NY	Roosevelt High School	14.2		Electical Room 200a	1	1	${ }^{0.0534}$	0.0250	1x4, 2-Lamp T8	LED Standard Wrap, NLO, 1 x4, Jack Chain Mount	750	0.05	0.03	0.03	${ }^{40}$	19	21
Roosevelt Schools NY	Roosevelt High School	15.2		Electrical Room 200a	1	1	0.0500	0.0500	Frog Eves, 2 x	will Not be Retofoft	8,760	0.05	0.05		38	438	
Roosevelt Schools NY	Roosevelt High School	16.2		Electrical Room 215a	2	2	0.0534	0.0250	1x4, 2-Lamp T8	LED Standard Wrap, NLO, 1x4, Jack Chain Mount	750	0.11	0.05	0.06	80	38	${ }^{43}$
Roosevelt Schools NY	Roosevelt High School	172		Electrical Room 215a		1	0.0500	. 0500	Frog Eyes, 2 x	will Not be Retofoft	8,760	0.05	0.05		438	438	
Roosevelt Schools NY	Roosevelt tigh School	18.2		Sever Room 215b	2	2	0.0534	0.0250	14x, 2--2mp T8	LED Standard Wrap, NLo, 1 X4, Jack Chain Mount	750	0.11	0.05	0.06	${ }^{80}$	38	43
Roosevelt Schools NY	Roosevelt tigh School	192		Facility Toiet 1	1	1	${ }^{0.0534}$	0.022	1x4, 2-Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps	2,079	0.05	0.02	0.03	111	46	65
Roosevelt Schools NY	Roosevelt High School	202		Facility Toiet 2	1	1	0.0534	0.0220	14x, 2-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	2.079	0.05	0.02	0.03	111	46	65
Roosevelt Schools NY	Roosevelt High School	21.2		Girs Room	4	4	0.0534	0.0220	1x4, 2-Lamp T8	LED Int. Driver Lamps, (2) 4 Lamps	3,000	0.21	0.09	0.13	641	264	377
Roosevelt Schools NY	Roosevelt tigh School	222		Giri's Room	2	2	0.028	0.0130	PL26w	LED Retofot Can Kit, 6 nch, NLO	3,000	0.06	0.03	0.03	168	78	90
Roosevelt Schools NY	Roosevelt High School	23.2		Custodian 201a	1	1	${ }_{0}^{0.0534}$	0.0250	14x, 2--Lamp T8	LED Standard Wrap, MLO, 1x4, Jack Chain Mount	1.800	0.05	0.03	0.03	${ }^{96}$	45	51
Roosevelt Schools NY	Roosevelt tigh School	24.2		Boy's Room	4	4	0.0534	0.0220	1x4, 2-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	3,000	0.21	0.09	0.13	641	264	377
Roosevelt Schools NY	Roosevelt tigh School	25.2		Boy's Room			0.0280	0.0130	F PL 26w	LED Retrofit Can Kit, 6 Inch, NLO	3,000	. 03	0.01	0.02	${ }^{84}$	39	45
Roosevelt Schools NY	Roosevelt High School	$26 / 2$		Halmays H1	12	12	0.0534	0.0220	1x4, -2-amp T8	LED Int. Driver Lamps, (2) 4 Lamps	3,000	0.64	0.26	0.38	1,922	792	1,130

Roosevelt UFSD, NY
Exhibit D-5-1
lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\underset{\substack{\text { Existing } \\ \text { aty }}}{ }$	$\begin{gathered} \text { Proposed } \\ \text { aty } \end{gathered}$	Existing kw	Proposed kw	Existing Dessripition	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ k w \end{gathered}$	$\begin{gathered} \text { Total Post } \\ k w \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \\ \hline \end{gathered}$	Total kWn Existing	Total kWh Proposed	$\begin{gathered} \text { Total kWh } \\ \text { Saved } \end{gathered}$
Roosevelt Schools NY	Roosevelt tigh School	27.2		Halway H1	7	7	0.0534	0.0220	1xa, -2-Lamp T , EM	LeD Int. Diviver Lamps, (2) 4 Lamps	8,760	0.37	0.15	0.22	3,274	1,349	1,925
Sosesell Schools NY	Roosevelt High School	28.2		Halway H1	1	1	0280	0.0130	em	LED Retrofit an Kit, 6 nch, , NLO	760	. 03	0.01	0.02	245	114	131
Sosevelt Schools NY	Roosevelt tigh School	292		Iway ${ }^{\text {H }}$	2	2			Exit Sign - Led, bB	will Not be Retofoft	8,760		.		-		
Roosevelt Schools NY	Roosevelt tigh School	302		Halway H1	2	2			Exit Sign - Leo, BB	will Not be Retoroft	8,760						
Rosesevel Schools NY	Roosevelth High School	312		Classroom A216	10	10	0.1068	0440	x4, 4-Lamp T8, DS	LED int. Diviver Lamps, (4) 4 Lamps, DS	119	1.07	0.44	0.63	2.263	932	1,331
Roosevelt Schools Mr	Roosevelt tigh School	322		Classroom A2160	1	1	${ }^{54}$	0.0220	$1 \times 4,2-\operatorname{lamp}$	LED Int. Divier Lamps, (2) 4 Lamps	00	0.05	0.02	0.03	160	66	94
Roosevelt Schools NY	Roosevelt tigh School	332		Storage St1	3	3	.0534	0.220	4, 2-L-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	750	16	0.07	0.09	120	54	66
Roosevelt Schools Nr	Roosevelt High School	342		Conterence Room	3	3	534	0.0240	<4, 2-Lamp T8, BL	LED Type C Lamps, (2)44 Lamp, LED Diviver, DIM	1.00	16	0.07	0.09	160	72	88
Roosevelt Schools Mr	Roosevelt tigh School	352		torage A222a	2	2	534	20	4, 2-L-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	800	0.11	0.04	0.06	85	35	50
Roosevelt Schools NY	Roosevelt tigh School	362		Facility Toilet 3	1	1	0.0534	0.022	1x4, -2-amp ${ }^{\text {P8 }}$	LeD Int. Diviver Lamps, (2) 4 Lamps	704	0.05	0.02	0.03	38	15	22
Roosevelt Schools NY	Roosevelt tigh School	372		Classroom A222c	9	9	0.054	0.024	2xt, 2-Lamp T8, BL	LED Type C Lamps, (2)44 Lamp, LED Diviver, DIM	19	48	0.22	0.26	1,018	458	561
Roosevelt Schools NY	Roosevelt tigh School	382		Classroom A222c	1	1	0.0534	0.0220	4, 2 -Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2.119	0.05	0.02	0.03	113	47	67
Roosevelt Schools NY	Roosevelt tigh School	392		Halways H2	7	7	0.0534	0.0220	1x4, -2-amp ${ }^{\text {cts }}$	LeD Int. Driver Lamps, (2) 4 Lamps	3,000	0.37	0.15	0.22	1,121	462	${ }_{659}$
Roosevelt Schools NY	Roosevelt High School	402		Halways H2	4	4	0534	0.0220	1x4, -2-Lamp TB , EM	LED Int. Divier Lamps, (2) 4 Lamps	8,760	0.21	0.09	0.13	1,871	771	1,100
Roosevelt Schools Mr	Roosevelt tigh School	412		Halways H2	4	4	0.0280	0.0130	PL 26w	LED Retrofit Can Kit, 6 nch, MLO	3,000	. 11	0.05	0.06	${ }_{336}$	156	180
Roosevelt Schools NY	Roosevelt tigh School	422		Halways H2	2	2			Exit Sign - LED, BB	will Not be Retoroft	8,760						
Roosevelt Schools Nr	Roosevelt tigh School	432		Classroom 8234	20	20	0.0534	0.0220	1x4, --Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2,119	1.07	0.44	0.63	2.263	932	1,331
Roosevelt Schools Mr	Roosevelt tigh School	442		Classroom 8332	11	11	. 0534	0.022	x4, 2-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	2,119	0.59	0.24	${ }^{.35}$	245	513	732
Roosevelt Schools NY	Roosevelt tigh School	$45 / 2$		Classrom E232b	1	1	0.0534	0.0220	1x4, 2-Lamp T8	LeD Int. Diviver Lamps, (2) 4 Lamps	3,000	0.05	0.02	0.03	160	66	${ }_{94}$
Roosevelt Schools Mr	Roosevelt tigh School	462		Classroom 8230	8	8	.0.034	0.022	44, 2-Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps	2,119	43	0.18	0.25	905	373	532
Roosevelt Schools Mr	Roosevelt tigh School	472		Electrical Room 8231	1	1	0.0534	0.0250	1x4, 2-Lamp 8	LED Standard Wrap, NLO, 1x4, Jack Chain Mount	750	0.05	0.03	0.03	40	19	21
Roosevelt Schools NY	Roosevelt tigh School	482		Classroom 8233	3	3	0.0534	0.0240	2xa, 2-Lamp T8, BL	LED Type C Lamps, (2)44 Lamp, LED Difiver, DIM	2.119	0.16	0.07	0.09	339	153	187
Roosevelt Schools NY	Roosevelt High School	492		Classroom 8235	12	12	0.0534	0.022	x4, 2 -Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	19	64	0.26	0.38	${ }_{3} 38$	559	798
Roosevelt Schools NY	Roosevelt tigh School	$50 / 2$		Classroom 8237	12	12	0.0534	0.0220	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2,19	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools NY	Roosevelt tigh School	512		Facily Development 8339	12	12	0.0534	0.0220	1x4, -2-amp T8	LED Int. Divier Lamps, (2) 4 Lamps	2.000	0.64	0.26	0.38	1,282	528	754
Roosevelt Schools NY	Roosevelt tigh School	522		Classroom 8241	24	24	0.0534	0.0220	1xt, --2amp T8	LED Int. Divier Lamps, (2) 4 Lamps	2.119	1.28	0.53	0.75	2.716	1,119	1,597
Roosevelt Schools NY	Roosevelt tigh School	532		Classroom 8241	1	1	0.0534	0.0220	1xa, -2-Lamp T8, EM	LEED Int. Divier Lamps, (2) 4 Lamps	2.119	0.05	0.02	0.03	113	47	67
Roosevelt Schools NY	Roosevelt tigh School	542		Prep Room 8241a	3	3	0.0534	0.0240	x4, 2-L-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	2.119	0.16	0.07	0.09	339	${ }_{153}$	187
Roosevelt Schools NY	Roosevelt tigh School	552		Prep Room 8241 a	1	1	0.0273	0.0110	1x4, 1 -Lamp ${ }^{\text {d8 }}$	LED Int. Diviver Lamp, (1) 4 Lamp	2.119	0.03	0.01	0.02	58	23	${ }^{35}$
Roosevelt Schools NY	Roosevelt High School	$56 / 2$		Classroom $\mathrm{B}^{\text {a }}$ 3	20	20	0.0534	0.0220	1x4, -2-amp T8	LED Int. Driver Lamps, (2) 4 Lamps	2.119	1.07	0.44	0.63	2,263	932	1,331
Roosevelt Schools NY	Roosevelt tigh School	572		Classroom 8246	12	12	0.0534	0.0220	1x4, -2-amp T8	LeD Int. Driver Lamps, (2) 4 Lamps	2.119	0.64	0.26	0.38	1358	559	798
Roosevelt Schools NY	Roosevelt tigh School	582		Electrical Room B246	1	1	0.0534	0.0250	1x, 2-2-amp T8	LED Standard Wrap, NLO, 1x4, Jack Chain Mount	750	0.05	0.03	0.03	40	19	21
Roosevelt Schools NY	Roosevelt High School	592		Classroom B244	12	12	0.0534	0.0220	1x4, --Lamp T8	LED Int. Divier Lamps, (2) 4' Lamps	2,19	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools NY	Roosevelt High School	$60 / 2$		Classroom 8242	12	12	0.0534	0.0220	1x4, 2--2mp T8	LeD Int. Diviver Lamps, (2) 4 Lamps	2.119	0.64	0.26	0.38	1,358	559	798

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Buiding Name	Index	Flor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Description	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total KWh Existing	Total kWh	$\begin{gathered} \text { Total kWh } \\ \text { Saved } \end{gathered}$
Roosevelt Schools NY	Roosevelt High School	6_{12}		Boys Room	5	5	0.0534	0.0220	1x4, -2-amp T8	LED int. Diver Lamps, (2) 4 Lamps	1,760	0.27	0.11	0.16	470	194	276
Roosevelt Schools NY	Rossevelt High School	622		Boys Room	1	1	0280	0.0130	FPL $26 \mathrm{w}, \mathrm{Em}$	LED Retrofit Can Kit, 6 nch, NLo	. 760	0.03	0.01	0.02	49	23	26
Sosevelt Schools NY	Roosevelt tigh School	632		Room	5	5	0534	0.0220	1x4, 2--Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps	1,760	0.27	0.11	0.16	470	194	276
Roosevelt Schools NY	Roosevelt tigh School	642		Giris Room	1	1	0.0280	0.0130	CF PL 26w, EM	LED Retrofit Can Kit, 6 nch, NLO	1,760	0.03	0.01	0.02	49	${ }_{23}$	26
Roosevelt Schools Nr	Roosevelt High School	652		Custodian 238b	1	1	. 0534	0.0250	1xt, --2amp T8	LED Standard Wrap, NLo, 1 x4, Jack Chain Mount	600	0.05	0.03	0.03	32	15	17
Roosevelt Schools Nr	Roosevelth tigh School	662		allways H	12	12	0.0534	0.022	1x4, 2-Lamp T8	LED Int Diviver Lamps, (2) 4 Lamps	3,000	0.64	0.26	0.38	192	792	,130
Roosevelt Schools NY	Roosevelt tigh School	672		Halways н3	7	7	.0534	0.022	x4, 2-Lamp T8, EM	LED Int. Diviver Lamps, (2) 4 Lamps	8,760	${ }^{3} 7$	0.15	0.22	274	,349	.925
Roosevelt Schools Nr	Roosevelt High School	682		Huays H	10	10	0.0280	0.0130	FFPL 260 , EM	LED Retrofit an Kit, 6 nch, NLO	8,760	0.28	0.13	0.15	2.453	1,139	1,314
Sosevelt Schools NY	Roosevelth tigh School	692		Halways н3	4	4	.0280	30	FFLL 26 w	LED Retrofit Can Kit, 6 nch, MLO	3,000	0.11	0.05	0.06	336	156	180
Roosevelt Schools NY	Roosevelth tigh School	702		Halway н3	2	2			Exit Sign - Led, BB	will Not be Retoroft	8,760			-			
Roosevelt Schools NY	Roosevelt High School	712		Halway н3	2	2			Exit Sign - Leo, bB	will Not be Retroft	8,760						
Rooseevelt Schools NY	Roosevelt tigh School	722		ever Room 2	2	2	0.0534	0.0250	4, 2-L-Lamp T8	LED Standard Wrap, MLo, 1 x4, Jack Chain Mount	750	0.11	0.05	0.06	80	38	43
Roosevelt Schools NY	Roosevelt tigh School	732		Halways H 4	6	6	0.0534	0.0220	$1 \times 4,2-\mathrm{Lamp}$ T8	LED Int. Diviver Lamps, (2) 4 Lamps	3,000	0.32	0.13	0.19	961	396	565
Roosevelt Schoos NY	Roosevelt High School	742		Halways H 4	4	4	0.0534	0.0220	$1 \times 4,2$-Lamp 78, EM	LED Int. Diviver Lamps, (2) 4 Lamps	8,760	0.21	0.09	0.13	1.871	771	1,100
Roosevelt Schools Nr	Roosevelt tigh School	752		Hallwas H 4	2	2			Exit Sign - Led, bB	will Not be Retofoft	8,760						
Roosevelt Schools NY	Roosevelt tigh School	762		Classroom C288	12	12	0.0534	0.0220	1x4, -2-1amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2,119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools Nr	Roosevelth tigh School	772		Classroom C266	12	12	${ }^{0.0534}$	0.022	1x4, -2-amp T8	LED Int Diviver Lamps, (2) 4 Lamps	2.119	0.64	0.26	0.38	1,.558	559	798
Roosevelt Schools NY	Roosevelt High School	782		Classroom C264	12	12	0.0534	0.0220	1x4, -2-Lamp T8	LeD Int. Diviver Lamps, (2) 4 Lamps	2,119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools NY	Roosevelt High School	792		Boys Room	4	4	0.0534	0.0220	1x4, -2-1amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,760	0.21	0.09	0.13	376	155	221
Roosevelt Schools Nr	Roosevelth tigh School	802		Boys Room	2	2	0.0280	0.0130	FPL $26 \mathrm{w}, \mathrm{Em}$	LED Retrofit an Kit, 6 nch, NLO	1,760	0.06	0.03	0.03	99	46	53
Rooseevelt Schools NY	Roosevelt tigh School	${ }_{81} 12$		Electrical Room C260	1	1	0.0534	0.0250	1x4, --Lamp T8	Led Standard Wrap, NLO, 1 x4, Jack Chain Mount	750	0.05	0.03	0.03	40	19	21
Roosevelt Schools NY	Roosevelth tigh School	822		Custodian Room C258	1		0.0534	0.0250	1x4, -2-amp T8	LED Standard Wrap, NLO, 1 x4, Jack Chain Mount	600	0.05	0.03	0.03	32	15	17
Roosevelt Schools NY	Roosevelt High School	832		Giris Room	4	4	0.0534	0.022	1x4, --Lamp T8	LeD Int. Diviver Lamps, (2) 4 Lamps	1,760	0.21	0.09	0.13	376	155	221
Roosevelt Schools NY	Roosevelt tigh School	842		Girls Room	2	2	0.0280	0.0130	CF PL 266 , EM	LED Retrofit Can Kit, 6 nch, NLO	1,760	0.06	0.03	0.03	99	46	${ }^{53}$
Roosevelt Schools NY	Roosevelt High School	${ }_{85} 2$		Classroom C254	12	12	0.0534	0.0220	1x4, -2-1amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2,119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools Nr	Roosevelth tigh School	862		Classroom C252	12	12	0.0534	0.0220	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2,119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools NY	Roosevelt High School	${ }_{87} 2$		Classroom C250	12	12	0.0534	0.0220	1xa, 2-Lamp T8	LeD Int. Diviver Lamps, (2) 4 Lamps	2,119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools NY	Roosevelt High School	882		Classroom C251	12	12	0.0534	0.0220	1xa, 2-Lamp 8	LED Int. Diviver Lamps, (2) 4 Lamps	2,119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools Nr	Roosevelt High School	892		Classroom C253	12	12	0.0534	0.0220	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2,119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools NY	Rooseverth High School	902		Classrom C255	12	12	0.0534	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2,119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schoos NY	Roosevelt High School	${ }_{91} 12$		Facilit Toile Fli	1		${ }^{0.0534}$	0.0220	1xt, -2-amp T8	LED int. Diviver Lamps, (2) 4 Lamps	2,079	0.05	0.02	0.03	111	46	65
Roosevelt Schools NY	Roosevelt tigh School	922		Classroom C259	10	10	0.0534	0.0220	1xa, -2-lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2,119	0.53	22	0.31	1,132	466	665
Roosevelt Schools NY	Rooseverth High School	${ }_{93} 2$		Classroom C259a	1	1	0.0534	0.0220	x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	3,000	0.05	0.02	0.03	60	66	94
Roosevelt Schools NY	Roosevelt High School	94.2		Classroom C261	12	12	0.0534	0.0220	1x, 2 -Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2,119	0.64	0.26	0.38	1,358	559	798

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{aligned} & \text { Total Post } \\ & \text { kW } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total kWn Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools NY	Roosevelt tigh School	952		Classroom C263	12	12	0.0534	0.0220	1x4, -2-amp ${ }^{\text {d8 }}$	LEED int Diviver Lamps, (2) 4 Lamps	2,119	0.64	0.26	0.38	1,358	559	798
Sosevelt Schools NY	Roosevelt High School	$96 / 2$		Classroom C265	12	12	${ }^{54}$	0.0220	4, 2--Lamp T8	LED nt. Diviver Lamps, (2) 4 Lamps	119	0.64	. 26	. 38	${ }_{\text {, } 358}$	559	798
Sosevelt Schools NY	Roosevelt tigh School	$97 / 2$		srom C267	3	3	0.0534	0.0240	¢p T ,	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	2.119	0.16	0.07	0.09	${ }^{339}$	153	187
Roosevelt Schools NY	Roosevelt tigh School	98.2		Classroom C267a	2	2	0.0534	0.0240	2xt, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	2,119	0.11	0.05	0.06	226	102	125
Rosesevel Schools NY	Roosevelth High School	992		Classroom C267b	2	2	0.0534	. 0240	<4, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	2.119	0.11	0.05	0.06	${ }^{226}$	102	125
Roosevelt Schools Mr	Roosevelt tigh School	1002		Classroom $\mathrm{C267c}$	2	2	0.0534	2	$2 \times 4,2-\operatorname{Lamp}$ т, E	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	2.119	11	0.05	0.06	226	102	125
Roosevelt Schools NY	Roosevelt tigh School	1012		Hallway H5	12	12	0.0534	0.0220	1x4, -2-amp T8	LED int. Diver Lamps, (2) 4 Lamps	3,000	0.64	0.26	0.38	1,922	792	1,130
Roosevelt Schools Nr	Roosevelt High School	1022		Halway H5	7	7	0.0534	0.0220	4, 2-Lamp 78, EM	LED int. Divier Lamps, (2) 4 Lamps	8,760	${ }^{37}$	0.15	0.22	3,274	1,349	1,925
Sosevelt Schools NY	Roosevelt tigh School	1032		Halways H5	13	13	880	.0130	26	LED Retrofit Can Kit, 6 inch, NLO	3,000	0.36	0.17	0.20	1,092	507	585
Roosevelt Schools NY	Roosevelt tigh School	1042		Hallway H5	3	3	0.0280	0.0130	CFPL 260 , EM	LED Retrofit Can Kit. 6 hrch, NLO	8,760	0.08	0.04	0.05	736	342	394
Roosevelt Schools NY	Roosevelt High School	1052		Halway H5	4	4			Exit Sign - Leo, bs	will Not be Retroft	8,760						
Roosevelt Schools Mr	Roosevelt tigh School	1062		Halways $\mathrm{H6}$	6	6	0.0534	0.0220	4, 2 -Lamp T8	LED int. Diver Lamps, (2) 4 Lamps	3,000	0.32	0.13	0.19	961	396	565
Roosevelt Schools NY	Roosevelt tigh School	$107 / 2$		Halways н6	3	3	0.0534	0.0220	1xa 4,2 -Lamp T , EM	LEED int Diviver Lamps, (2) 4 Lamps	8,760	0.16	0.07	0.09	1,403	578	825
Roosevelt Schools NY	Roosevelt High School	1082		Halway H6	2	2	0280	0.0130	CF PL 26 w	LED Retrofit Can Kit, 6 hrch, NLO	3,000	0.06	0.03	0.03	168	78	90
Roosevelt Schools Mr	Roosevelt tigh School	1092		malway H6	4	4			Exit Sign - Leo, BB	will Not be Retroft	8,760		.		-		
Roosevelt Schools NY	Roosevelt tigh School	1102		Staimels C 1	3	3	0.0534	0.0220	1x, 2--Lamp T8	LEED int. Diver Lamps, (2) 4 Lamps	3,750	0.16	0.07	0.09	601	248	353
Roosevelt Schools Nr	Roosevelt tigh School	1112		Staimels C1	1	1			Exit Sign - Leo, bs	will Not be Retroft	8,760						
Roosevelt Schools NY	Roosevelt High School	1122		Stairels C_{2}	3	3	0.0534	0.0220	1x4, -2-amp T8	LeD int. Diver Lamps, (2) 4 Lamps	3,750	0.16	0.07	0.09	601	248	353
Roosevelt Schools NY	Roosevelt tigh School	1132		Staimels C^{2}	1	1			Extit Sign - LED, BB	will Not be Retroft	8,760						
Roosevelt Schools Mr	Roosevelt tigh School	1142		Stairwels B^{1}	3	3	0.0534	0.0220	X4, 2-Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	3,750	16	0.07	0.09	601	248	353
Roosevelt Schools Mr	Roosevelt tigh School	1152		Stairwels $\mathrm{B}^{\text {1 }}$	1	1			Exit Sign - Leo, bB	will Not be Retroft	8,760				.		
Roosevelt Schools NY	Roosevelt tigh School	1162		Staimels $\mathrm{B}^{\text {a }}$	3	3	0.0534	0.022	1x, 2--Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	3,750	0.16	0.07	0.09	601	248	353
Roosevelt Schools NY	Roosevelt High School	1172		Stairwels B^{2}	1	1			Exit Sign - Led, bs	will Not be Retroft	8.760						
Roosevelt Schools NY	Roosevelt tigh School	1182		Stairwels A2	6	6	0.0534	0.0220	1x4, --Lamp T8	LEED int. Diver Lamps, (2) 4 Lamps	3,750	0.32	0.13	0.19	1,202	495	707
Roosevelt Schools NY	Roosevelt tigh School	1192		Stairwels A2	2	2			Exit Sign - LED, BB	will Not be Retroft	8,760						
Roosevelt Schools MY	Roosevelt High School	1202		Staimels A1	3	3	0.0280	0.030	FPL 26w	LED Retrofit Can Kit, 6 nch, NLO	3,750	0.08	0.04	0.05	315	146	169
Roosevelt Schools NY	Roosevelt tigh School	1212		Staimels A1	1	1	0.0534	0.0220	1x4, --Lamp T8	LED int. Diver Lamps, (2) 4 Lamps	3,750	0.05	0.02	0.03	200	83	118
Roosevelt Schools NY	Roosevelt tigh School	1221		Classroom A101	16	16	0.0534	0.0220	1x4, -2-amp ${ }^{\text {e }}$	LEED int Diviver Lamps, (2) 4 Lamps	2.119	0.85	0.35	0.50	1,810	746	1,065
Roosevelt Schools NY	Roosevelt High School	1232		Classroom A103	25	25	0.0534	0.0220	1x4, --2amp T8	LED int. Divier Lamps, (2) 4 Lamps	2.119	1.34	0.55	0.79	2,829	1,165	1,663
Roosevelt Schools NY	Roosevelt tigh School	1242		Prep Room A103a	3	3	${ }^{54}$. 0240	<4, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	2.119	0.16	0.07	. 09	${ }^{339}$	153	187
Roosevelt Schools NY	Roosevelt tigh School	1252		Prep Room A103a	1	1	0.0273	0.0110		LED Int. Diver Lamp, (1) 4 Lamp	2,119	0.03	0.01	0.02	${ }_{58}$	23	${ }^{35}$
Roosevelt Schools NY	Roosevelt tigh School	1262		Classroom A105	16	16	0.0534	0.022	1x4, -2-amp T8	LED int. Diviver Lamps, (2) 4 Lamps	2,119	0.85	0.35	0.50	. 810	746	1.065
Roosevelt Schools NY	Roosevelt High School	$127 / 2$		Dance Sudios A107	14	14	0.0534	0.0220	1x4, 2-Lamp T8	LeD Int. Diviver Lamps, (2) 4 Lamps	2,119	0.75	0.31	0.44	${ }_{1,584}$	653	932
Roosevelt Schools NY	Roosevelt tigh School	128.2		Dance Studios A107a	3	3	0.079	0.0330	2x4, --Lamp T8	LeE int Diviver Lamps, (3) 4 Lamps	2.119	0.24	0.10	0.14	505	210	296

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { aty } \\ \hline \end{gathered}$	$\underset{\substack{\text { Proposed } \\ \text { aty }}}{ }$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ k w \end{gathered}$	$\left.\begin{array}{\|c\|c\|c\|c\|c\|c\|l\|l\|l\|l\|l\|} \\ k w \end{array} \right\rvert\,$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	$\begin{aligned} & \text { Total kWh } \\ & \text { Pronosed } \end{aligned}$	$\begin{gathered} \text { Total kWh } \\ \text { Saved } \end{gathered}$
Roosevelt Schools NY	Roosevelt High School	1292		Dance Studios A107b	3	3	0.079	0.0330	2x4, -Lamp T8	LED Int. Diviver Lamps, (3) 4 Lamps	2.119	0.24	0.10	0.14	505	210	296
Roosevelt Schools My	Roosevelthigh School	1301		chorus 1109	16	16	0.0377	0.0160	2, 2-Lamp 78	LED int. Divive Lamps, (2) 2 Lamps	2,119	0.51	0.26	0.25	, 075	542	532
Roosevelt Schools NY	Roosevelt High School	131		Chorus A109	8	8	0.0280	.0130	FPL2	LED Retofotit Can Kit, 6 inch, NLO	2.119	0.22	0.10	0.12	475	220	254
Roosevelt Schools NY	Roosevelth tigh School	1321		Practice Room A109a	1	1	0.079	0.0330	4, 3,-Lamp T8	LED Int. Divier Lamps, (3) 4 Lamps	2.119	0.08	0.03	0.05	168	70	99
Roosevelt Schools NY	Roosevelt tigh School	1331		Practice Room A109b	2	2	0.054	0.0240	4, 2-L-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, Led diver, DIM	2.119	0.11	0.05	0.06	226	102	125
Roosevelt Schools NY	Roosevelt thig School	134.		Men's Room 1	3	3	0.0534	0.0220	Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2,400	0.16	0.07	0.09	384	158	226
Roosevelt Schools NY	Roosevelth tigh School	1351		Mer's Room 1	1	1	0.0280	0.0130	CF PL 260 , EM	LED Retofotit Can Kit, 6 loch, NLO	2.400	0.03	0.01	0.02	${ }^{67}$	31	36
Roosevelt Schools NY	Roosevelt High School	1361		Women's Room 1	3	3	0.0534	0.0220	44, 2-Lamp T8	LED int. Driver Lamps, (2) 4 Lamps	200	0.16	.07	0.09	384	158	226
Roosevelt Schools NY	Roosevelt tigh School	${ }_{137} 1$		omen's Room	1	1	0.0280	0.0130	PLL26w, EM	LED Retofofic an Kit, 6 nch, NLO	2.400	0.03	0.01	0.02	67	31	36
Roosevelt Schools NY	Roosevelt tigh School	1381		Band A115	28	28	0.0317	0.0160	2x2, 2-Lamp T8	LED Int. Diver Lamps, (2) ${ }^{2}$ Lamps	2.119	0.89	0.45	0.44	1.881	949	932
Roosevelt Schools NY	Roosevelt High School	1391		Band A115	2	2			Exit Sign - Led, bB	will Not be Retofot	8,760						
Roosevelt Schools NY	Roosevelt tigh School	1401		Practice Room A115b	1	1	0.079	.0330	Lamp T8	LED Int. Divier Lamps, (3) 4'Lamps	2.119	0.08	0.03	0.05	168	70	99
Roosevelt Schools NY	Roosevelt High School	1411		Practice Room A115a	1	1	0.079	0.0330	2x4, 3-Lamp T8, DS	LED Int. Diver Lamps, (3) 4 Lamps, DS	2.119	0.08	0.03	0.05	168	70	99
Roosevelt Schools NY	Roosevelt High School	1421		Halways H1	10	10	0.0534	0.0220	1x, 2--Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	3,000	0.53	0.22	0.31	1.602	660	942
Roosevelt Schools NY	Roosevelth tigh School	1431		Halways $\mathrm{H1}$	7	7	0.0534	0.0220	-Lamp т8, ем	LED int. Diver Lamps, (2) 4 Lamps	8,760	0.37	0.15	0.22	3,274	1,349	1,925
Roosevelt Schools NY	Roosevelt tigh School	144.		Halways H1	8	8	0.0280	0.0130	CF PL 26 w	LED Retroft Can Kit, 6 nch, NLO	3,000	0.22	0.10	0.12	672	312	360
Roosevelt Schools NY	Roosevelth tigh School	1451		Halways H	4	4	0.0280	0.0130	PL 26w, EM	LED Retofotit an Kit, 6 nch, , NLO	8,760	0.11	0.05	0.06	981	456	526
Roosevelt Schools NY	Roosevelt tigh School	1461		Halways H_{1}	4	4			Exit Sign - Led	will Not be Retorft	8,760						
Roosevelt Schools NY	Roosevelth High School	1471		Classroom A112	12	12	0.0534	0.0220	1x4, 2-Lamp $\mathrm{T8}$	LED Int. Diviver Lamps, (2) 4 Lamps	2.119	0.64	0.26	0.38	1.358	559	798
Roosevelt Schools NY	Roosevelth tigh School	1481		Administraion office A110	4	4	0.0534	0.0240	x4, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	2.119	0.21	0.10	0.12	453	203	249
Roosevelt Schools NY	Roosevelth tigh School	1491		Administraion office A110a	2	2	0.0534	1240	Lamp T , bL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	2,119	0.11	0.05	0.06	226	102	125
Roosevelt Schools NY	Roosevelt tigh School	1501		Administraion office A110b	2	2	0.054	0.0240	2xa, -2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	2.119	0.11	0.05	0.06	226	102	125
Roosevelt Schools NY	Roosevelt High School	151		Classroom A108	12	12	0.0534	0.0220	1x, 2--Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps	2.119	0.64	0.26	${ }^{0.38}$	1.358	559	798
Roosevelt Schools NY	Roosevelt High School	1521		Classroom A106	11	11	0.054	0.0220	1x4, 2-Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps	2.119	0.59	0.24	0.35	1.245	513	732
Roosevelt Schools NY	Roosevelt High School	1531		Classroom A106a	1	1	0.054	0.0220	1x, 2 -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	704	0.05	0.02	0.03	38	15	22
Roosevelt Schools NY	Roosevelt High School	1541		Classroom A104	12	12	0.0534	0.0220	1x, 2--2amp T8	LED Int. Diver Lamps, (2) 4 Lamps	2.119	0.64	0.26	0.38	1.358	559	798
Roosevelt Schools NY	Roosevelt High School	1551		Electrical Room A100	1	1	0.0534	0.0250	1x4, 2-Lamp T8	LeD Standard Wrap, NLO, 1x4, Jack Chain Mount	750	0.05	0.03	0.03	40	19	21
Roosevelt Schools NY	Roosevelt High School	1561		Classroom A100	12	12	0.054	0.0220		LED Int. Diviver Lamps, (2) 4 Lamps	2.119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools NY	Roosevelt High School	1571		Classroom A100a	6	6	0.054	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2,119	0.32	0.13	0.19	679	280	399
Roosevelt Schools NY	Roosevelt tigh School	1581		Classroom A100a	1	1	0.0500	0.0500	yes	will Not be Retorfit	8,760	0.05	0.05		438	438	
Roosevelt Schools NY	Roosevelth tigh School	1591		Classroom A1000	1	1	0.054	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2,119	0.05	0.02	0.03	113	47	67
Roosevelt Schools NY	Roosevelt High School	1801		Hallway Hz	14	14	0.054	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	3,000	0.75	0.31	${ }^{0.44}$	2.243	924	1,319
Roosevelt Schools NY	Roosevelth tigh School	161.		Halways H 2	8	8	0.0534	0.0220	1x4, -2-Lamp T8, EM	LED lnt. Diver Lamps, (2) 4 Lamps	8,760	0.43	0.18	. 25	742	542	2,201
Roosevelt Schools NY	Roosevelt High School	1621		Halways H 2	3	3			Extitign - Leo, bs	will Not te Retoroft	8,760						

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Description	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \mathrm{kN} \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	Total kwn Proposed	Total kWh
Roosevelt Schools NY	Roosevelt High School	1631		Hallwas Hz	1	1			Ext Sign - Led, bB	will Not be Retoroft	8,760						
Roosevelt Schools NY	Roosevelt High School	1641		allway Hz	2	2	2880	. 0133	26w	LED Retrofit Can Kit, 6 nch, NLO	3,000	0.06	0.03	0.03	168	78	90
Roosevelt Schools NY	Roosevelt tigh School	1651		Storage A114f	1	1	0.0534	0.0220	amp	LED Int. Diviver Lamps, (2) 4'Lamps	750	0.05	0.02	0.03	40	17	24
Roosevelt Schools NY	Roosevelt High School	1661		lage	16	16	0.053	0.025	1x4, 2-Lamp T8	LED Standard Wrap, NLO, 1×4, Jack Chain Mount, STAGE SCAFFOLD	1,760	0.85	0.40	0.45	. 504	704	800
Roosevelt Schools NY	Roosevelt High School	1671		Stage	2	2	0.0534	0.0250	1x4, 2-1amp 78	LED Standard Wrap, NLO, 1x, , Jack Chain Mount	1,760	0.11	0.05	0.06	188	88	100
Roosevelt Schools NY	Roosevelth tigh School	1681		Stage	3	3			Exit Sign - Led, bs	will Not be Retorit	8,760		.				
Roosevelt Schools NY	Roosevelth tigh School	1691		Stage	4	4	0.050	0.050	Frog Eyes	will Not be Retoroft	8,760	0.20	0.20		. 752	1,752	
Roosevelt Schools NY	Roosevelt High School	1701		Change Room A114b	2	2	0.0534	0.0220	1x4, 2-Lamp T8	LED int. Driver Lamps, (2) 4 Lamps	600	0.11	0.04	. 06	64	26	38
Roosevelt Schools NY	Roosevelt High School	1711		Change Room A114c	2	2	0.0534	0220	1x4, 2-Lamp T8	LED int. Driver Lamps, (2) 4 Lamps	600	0.11	0.04	0.06	64	26	38
Roosevelt Schools NY	Roosevelt tigh School	1721		Audiorium A114	48	48	0.0860	0.0270	CF PL (2) 42v, DIM	LED Retroft Can Kit, 10 nch, HLO, DIM, 120v, XL, H1	1,760	4.13	1.30	2.83	7,265	2,281	4,984
Roosevelt Schools NY	Roosevelt High School	1731		Auditorium A114	10	10	8860	0.0270	CF PL (2) 42w, BB, DIM	LED Retrofit Can Kit, 10 Inch, Goof Ring, HLO, 120 V DIM, BB	1,760	86	0.27	0.59	514	475	, 038
Roosevelt Schools NY	Roosevelt High School	174.		Audiorium A114	4	4	0.0860	0.0270	CF PL (2) 42v, DIM	LED Retroft Can Kit, 10 Inch, HLO, DIM, 120V, XL, H1	1,760	0.34	0.11	0.24	605	190	415
Rosevelt Schools NY	Roosevelt High School	1751		Auditorum A114	4	4	0.08	0.0270	CF PL (2) 42w, BB, DIM	LED Retrofit Can Kit, 10 Inch, Goof Ring, HLO,120V DIM, BB	1,760	0.34	0.11	0.24	605	190	415
Roosevelt Schools NY	Roosevelt High School	1761		Audiorium A114	2	2	0.0400	0.0150	CFPLL (2) 18w	LED Retrofit Hall Cirice Kit, 9 Mnch, NLO, XL., H1	1,760	0.08	0.03	0.05	141	53	88
Roosevelt Schools NY	Roosevelt tigh School	1771		Auditorium A114	2	2	0.0400	0.0150	CF PL (2) 18w	LED Retrofit Half Cirice Kit, 9 Mnch, NLO, XL, HI	1,760	0.08	0.03	0.05	141	53	88
Roosevelt Schools NY	Roosevelth tigh School	1781		Auditorium A114	6	6			Extitign-LED	will Not be Retoroft	8,760						
Roosevelt Schools NY	Roosevelth tigh School	1791		Control Room	4	4	0.0280	0.0130	CF PL 26w, Dimmable	LED Retofotit Can Kit, 6 hech, , NLO, DIM	1,760	0.11	0.05	0.06	197	92	106
Roosevelt Schools NY	Roosevelt tigh School	1801		Halways нз	15	15	0.0280	0.0130	CFPL 26 w	LED Retofotit an Kit, 6 inch, , NLO	3,000	0.42	0.20	0.23	1,260	585	675
Roosevelt Schools NY	Roosevelth High School	181.		Halways нз	7	7	0.0280	0.0130	CFPL 26w, EM	LED Retroftit an Kit, 6 nch, N. Lo	3,000	0.20	0.09	0.11	588	273	315
Roosevelt Schools NY	Roosevelt High School	1821		Halways нз	4	4			Exit Sign - Led	will Not be Rerofoft	8,760						
Roosevelt Schools NY	Roosevelt High School	1831		Fove	5	5	0.0280	0.0130	CFPL 26 w	LED Retrofit an K Kit, 6 lech, , NLO	3,000	0.14	0.07	0.08	420	195	225
Roosevelt Schools NY	Roosevelth tigh School	1841		Display Case 1	2	2	0.0237	0.0110	1x3, 1-1amp T8	LED Int. Driver Lamp, (1) $3^{\text {'Lamp }}$	750	0.05	0.02	0.03	36	17	19
Roosevelt Schools NY	Roosevelt High School	1851		Storge A114a	1	1	0.0534	0.0220	1x4, 2-Lamp T8	LED int. Driver Lamps, (2) 4 Lamps	750	0.05	0.02	0.03	40	17	24
Roosevelt Schools NY	Roosevelt High School	1861		Mechanical A114e	8	8	0.0534	0.0250		LED Standard Wrap, NLo, 1x, , Jack Chain Mount	750	0.43	0.20	0.23	320	150	170
Roosevelt Schools NY	Roosevelth High School	1871		Mechanical A114e	2	2	0.0534	0.0250	1x4, 2-Lamp T , EM	LED Standard Wrap, NLO, 1x4, Jack Chain Mount	750	0.11	0.05	0.06	80	38	43
Roosevelt Schools NY	Roosevelt High School	1881		Mechanical A114e	2	2	0.0534	0.0250	1x4, 2-Lamp $78, \mathrm{Em}$	LED Standard Wrap, NLO, 1 $\times 4$	750	0.11	0.05	0.06	80	38	43
Roosevelt Schools NY	Roosevelt High School	1891		Custodian Closet A116	1	1	0.0534	0.0250	1x4, 2-Lamp T8	LED Standard Wrap, NLo, 1x, , Jack Chain Mount	600	0.05	0.03	0.03	32	15	17
Roosevelt Schools NY	Roosevelth tigh School	1901		Eevator Room	2	2	0.0534	0.0250	1x4, 2-Lamp 88 $^{\text {a }}$	LED Standard Wrap, NLO, 1x4, Jack Chain Mount	750	0.11	0.05	0.06	80	38	43
Roosevelt Schools NY	Roosevelt High School	1911		Facility Toile 1	1	1	0.0534	0.0220	1x4, 2-Lamp 8	LED Int. Divier Lamps, (2) 4 Lamps	2.400	0.05	0.02	0.03	128	${ }^{53}$	75
Roosevelt Schools NY	Roosevelt High School	1921		Guidance A122	12	12	0.0534	0.0240	2x4, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, Led Diviver, DIM	1.440	0.64	0.29	0.35	923	415	508
Roosevelt Schools NY	Roosevelth tigh School	1931		Guidance A122a	2	2	0.0534	0.0240	$2 \times 4,2$-2mamp 8 , bL	LED Type C Lamps, (2)44 Lamp, LED Diviver, DIM	1,440	0.11	0.05	0.06	154	69	${ }^{85}$
Roosevelt Schools NY	Roosevelth tigh School	1941		Suidance A122b	2	2	0.0534	0.0240	2x4, 2-Lamp 8 8, BL	LED Type C Lamps, (2)44 Lamp, Led Diviver, DIM	1,440	0.11	0.05	0.06	154	69	85
Roosevelt Schools NY	Roosevelt High School	1951		Guidance A1220	2	2	0.0534	402	2x4, 2-Lamp T8, BL	LED Type C Lamps, (2)4 Lamp, LED Diver, DIM	1,440	0.11	0.05	0.06	154	69	85
Roosevelt Schools NY	Roosevelt High School	1961		Guidance A122d	2	2	0.0534	0.0240	2x4, 2-Lamp 78 , BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	1.440	0.11	0.05	0.06	154	69	${ }^{85}$

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Buiding Name	Index	Floor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Exising Descripion	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{aligned} & \text { Total Post } \\ & \text { kW } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total kWn Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools NY	Roosevelt tigh School	1971		Guidance A122e	2	2	0.0534	0.0240	$2 \times 4,2$-Lamp T , BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	1,440	0.11	0.05	0.06	154	69	85
Soseselt Schools NY	Roosevelt High School	1981		Guidance A122f	4	4	0534	0.0240	4, 2-L-Lamp T, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	1.440	0.21	0.10	0.12	${ }^{308}$	138	169
Sosevelt Schools NY	Roosevelt tigh School	1991		Sidance $\mathrm{Al22g}$	2	2	0.0534	0.0240	mp T , Q	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	1,440	0.11	05	0.06	154	69	85
Roosevelt Schools NY	Roosevelt tigh School	2001		Guidance A122h	2	2	0.0534	0.0240	2xt, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	1,440	0.11	0.05	0.06	154	69	${ }^{85}$
Rosesevel Schools NY	Roosevelth High School	2011		Guidance A122i	1	1	0.0280	0.0130	L26w	LED Retrofit Can Kit, 6 nch, NLO	1.440	0.03	0.01	0.02	${ }^{40}$	19	22
Roosevelt Schools Mr	Roosevelt tigh School	2021		Guidance A122j	1	1	534	0.0250	1x4, --1amp T8	Led Standard Wrap, MLo, 1 x4, Jack Chain Mount	1,440	0.05	0.03	0.03	${ }^{77}$	36	41
Roosevelt Schools NY	Roosevelt tigh School	2031		Storage 2	2	2	0.0377	0.0160	2x, 2--Lamp T8	LED int. Diviver Lamps, (2) 2 Lamps	1.440	0.06	0.03	0.03	91	46	${ }^{45}$
Roosevelt Schools Nr	Roosevelt High School	2041		Halways H4	6	6	0.0534	0.0220	1x4, -2-amp T8	LED Int. Divier Lamps, (2) 4 Lamps	3,000	32	0.13	0.19	961	96	565
Roosevelt Schools Mr	Roosevelt tigh School	2051		Halways H4	3	3	0.0534	0.02	2-2-amp T8, EM	LED int. Diver Lamps, (2) 4 Lamps	3,000	0.16	0.07	0.09	481	198	283
Roosevelt Schools NY	Roosevelt tigh School	2061		Halways H4	3	3			Exit Sign - LED, BB	will Not be Retroft	8,760						
Roosevelt Schools NY	Roosevelt High School	2071		Halways H4	1	1			Exit Sign - Leo, bs	will Not be Retroft	8,760						
Roosevelt Schools NY	Roosevelt tigh School	2081		Telcom A117	3	3	0.0534	0.0250	4, 2 -L-amp T8	Led Standard Wrap, MLo, 1 x4, Jack Chain Mount	750	0.16	0.08	0.09	120	56	64
Roosevelt Schools NY	Roosevelt tigh School	2092		Restrom 1	1	1	0.0534	0.0220		LEED Int. Diver Lamps, (2) 4 Lamps	1,760	0.05	0.02	0.03	94	39	55
Roosevelt Schools NY	Roosevelt High School	2101		Libary 011	32	32	0.054	0.0220	1x4, --Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	1,760	1.71	0.70	1.00	3,007	1,239	1,768
Roosevelt Schools Mr	Roosevelt tigh School	2111		Libary 011	4	4	0.0280	0.0070	PL 26 w	LED Retrofit Can Kit, 4 nch, NLO	1,760	0.11	0.03	0.08	197	49	148
Roosevelt Schools NY	Roosevelt tigh School	2121		Libray 011	3	3			Exit Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools Nr	Roosevelt tigh School	2131		Libary 011	20	20	0.0620	0.0250	1×4, 1-Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	1,760	1.24	0.50	0.74	, 182	880	, 302
Roosevelt Schools Mr	Roosevelt tigh School	2141		Libary 011	9	9	3500	. 1020	-amp 55 Biax	LED Int. Diviver Lamp, (6) 55 w BXEQ, x \times	1,760	3.15	0.92	2.23	. 544	1,616	3,928
Roosevelt Schools NY	Roosevelt tigh School	2151		Libray 011b	2	2	0.0534	0.0240	$2 \times 4,2$-Lamp T , BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools Mr	Roosevelt tigh School	2161		Library 011c	3	3	0.0534	0.020	x4, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	3,200	16	0.07	0.09	${ }^{513}$	230	282
Roosevelt Schools Mr	Roosevelt tigh School	2171		Libray 011e	3	3	0.0795	0.0330	2xa, 3-Lamp T8, DS	LED Int. Driver Lamps, (3) 4 Lamps, DS	3,200	0.24	0.10	0.14	763	317	446
Roosevelt Schools NY	Roosevelt tigh School	2181		Libray 011d	1	1	0.0534	0.0220	1x4, -2-amp T8	LED int. Divier Lamps, (2) 4 Lamps	600	0.05	0.02	0.03	${ }_{32}$	13	19
Roosevelt Schools NY	Roosevelth tigh Schol	2191		Schools Store B131	2	2	0.0534	0.0240	x4, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	1,440	0.11	0.05	0.06	${ }^{154}$	69	${ }^{85}$
Roosevelt Schools NY	Roosevelt tigh School	2201		Custodian Office B133	2	2	0.0534	0.0240	2xt, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	1,440	0.11	0.05	0.06	154	69	85
Roosevelt Schools NY	Roosevelt tigh School	2211		Custodian office B133a	1	1	0.0534	0.0220	1x4, -2-amp ${ }^{\text {c/8 }}$	LED Int. Diviver Lamps, (2) 4 ${ }^{\text {Lampps }}$	1,760	0.05	0.02	0.03	${ }_{94}$	39	${ }_{5}$
Roosevelt Schools NY	Roosevelt High School	2221		Cuinay Ats B135	16	16	0.0534	0.0220	1x4, -2-amp T8	LED Int. Divier Lamps, (2) 4 Lamps	2.119	0.85	0.35	0.50	1,880	746	1.065
Roosevelt Schools NY	Roosevelt tigh School	2231		Culinary Ars B135a	24	24	0.0534	0.0220	1x4, -2-amp T8	LED int. Diver Lamps, (2) 4 Lamps	2.119	1.28	0.53	0.75	2.716	1,119	1,597
Roosevelt Schools NY	Roosevelt tigh School	2241		Culinay Ats B 135 a	3	3	0.0534	0.0220	1x4, -2-amp ${ }^{\text {e }}$	LEED int Diviver Lamps, (2) 4 Lamps	2.119	0.16	0.07	0.09	339	140	200
Roosevelt Schools NY	Roosevelt High School	2251		Storage B135b	2	2	0.079	0.0330	2x4, --amp ${ }^{\text {a }}$	LED int. Divier Lamps, (3) 4 Lamps	2.119	0.16	0.07	0.09	337	140	197
Roosevelt Schools NY	Roosevelt High School	2261		Storage B135c		1	0.0543	0.0210	2×2.2-Lamp U $\mathrm{T}^{\text {d }}$	LED int. Diver Lamps, (3) 2^{2} Lamps, $2 \times 2 \times$ Kit	2.119	0.05	0.02	0.03	115	44	71
Roosevelt Schools NY	Roosevelt High School	2271		Wakl in Cooler B135d	2	2	0.1170	0.0500	1x4, 2-Lamp 75 Ho	LED Int. Driver Lamp, (2) 4' T5 HO Lamps, Extra Labor	2.119	0.23	0.10	0.13	496	212	284
Roosevelt Schools NY	Roosevelt tigh School	2281		Cte B_{137}	36	36	0.0534	0.02	1xt, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2,119	1.92	0.79	1.13	4.074	1,678	2,395
Roosevelt Schools NY	Roosevelt High School	2291		Storae B139	1	1	0.0534	0.022	1x4, --Lamp T8	LeD int. Divier Lamps, (2) 4'Lamps	1,440	0.05	0.02	0.03	${ }_{77}$	32	45
Roosevelt Schools NY	Roosevelt High School	2301		Classroom B141	19	19	0.0534	0.0220	1x4, -2-amp $\mathrm{T}^{\text {d }}$	LEED Int Diviver Lamps, (2) 4 Lamps	2,119	1.01	0.42	0.60	2,150	886	1.26

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Flor	Location	$\begin{gathered} \text { Existing } \\ \text { Qty } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Exising Descripion	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{aligned} & \text { Total Post } \\ & \text { kW } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total kWn Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools NY	Roosevelt tigh School	2311		Prep Room A141a	3	3	0.0534	0.0240	$2 \times 4,2$-Lamp T , BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	2,119	0.16	0.07	0.09	339	153	187
Rosesvelt Schools NY	Roosevelt High School	2321		Prep Room Al41a	1	1	0.0273	0.0110	44, 1-Lamp T8	LED Int. Diver Lamp, (1) 4 Lamp	119	. 03	. 01	0.02	${ }_{58}$	23	35
Sosevelt Schools NY	Roosevelt tigh School	2331		Classroom 1433	25	25	0.0534	0.0220	1x4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps	2.119	${ }^{34}$	0.55	0.79	2,829	1,165	1,663
Roosevelt Schools NY	Roosevelt High School	2341		Classroom B145	25	25	0.0534	0.0220	1x4, -2-amp ${ }^{\text {d8 }}$	LEED int Diviver Lamps, (2) 4 Lamps	2,119	1.34	0.55	0.79	2,829	1,165	1,663
Rosesevel Schools NY	Roosevelth High School	2351		Prep Room A145a	3	3	0.0534	0.0240	x4, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	2.19	0.16	0.07	0.09	${ }^{339}$	153	187
Roosevelt Schools Mr	Roosevelt tigh School	2361		Room A145a	1	1	0.027	0.011	1x4, 1 -Lamp ${ }^{\text {a }}$	LED Int. Diver Lamp, (1) 4 Lamp	2.119	0.03	0.01	0.02	${ }^{58}$	23	35
Roosevelt Schools NY	Roosevelt tigh School	2371		Classroom B141	20	20	0.0534	0.0220	1x4, -2-amp T8	LED int. Diviver Lamps, (2) 4 Lamps	2.119	1.07	0.44	0.63	2,263	932	1,331
Roosevelt Schools Nr	Roosevelt High School	2381		Classroom B150	21	${ }_{21}$	0.054	0.0220	1xt, -2-amp T8	LED Int. Divier Lamps, (2) 4 Lamps	2.119	12	0.46	0.66	2.376	979	1,397
Roosevelt Schools Mr	Roosevelt tigh School	2391		Prep Room A148a	2	2	534	0.0240	4, 2-L-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	2.119	0.11	0.05	0.06	226	102	125
Roosevelt Schools NY	Roosevelt tigh School	2401		Classroom B148	21	21	0.0534	0.0220	1x4, -2-amp T8	LED int. Diviver Lamps, (2) 4 Lamps	2.119	1.12	0.46	0.66	2,376	979	1,397
Roosevelt Schools NY	Roosevelt High School	2411		Giris Room Gr4	5	5	0.054	0.0220	1x4, --Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	60	27	0.11	0.16	470	194	276
Roosevelt Schools NY	Roosevelt tigh School	2421		Giris Room Gra	1	1	0.0280	0.0130	PLL $26 \mathrm{v}, \mathrm{EM}$	LED Retrofit Can Kit 6 inch, NLO	1,760	0.03	0.01	0.02	${ }^{49}$	23	26
Roosevelt Schools NY	Roosevelt tigh School	2431		Custodian Closet 1144	1	1	0.0200	0.0090	CF PL 18 w	LED Wall Jar, 1,000 Lumen	600	0.02	0.01	0.01	12	5	7
Roosevelt Schools NY	Roosevelt High School	2441		Boys Room Br4	5	5	0534	0.0220	1x4, --Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps	1,760	0.27	0.11	0.16	470	194	276
Roosevelt Schools Mr	Roosevelt tigh School	2451		Boys Room Br4	1	1	0.0280	0.0130	PPL26w, EM	LED Retrofit Can Kit, 6 hnch, NLO	1,760	0.03	0.01	0.02	49	23	26
Roosevelt Schools NY	Roosevelt tigh School	2461		Classroom B140	20	20	0.0534	0.0220	1x4, -2-amp T8	LEED int Diviver Lamps, (2) 4 Lamps	2,119	1.07	0.44	0.63	2,263	932	1,331
Roosevelt Schools Nr	Roosevelt tigh School	2471		Classroom B142	16	16	0.0534	0.0220	X4, 2-Lamp T8	LED int Diviver Lamps, (2) 4 Lamps	2.119	0.85	0.35	0.50	,810	746	${ }_{1}^{1,06}$
Roosevelt Schools Mr	Roosevelt tigh School	2481		Halways H5	19	19	0.0534	0.022	1xt, -2-amp T8	LED int. Diviver Lamps, (2) 4 Lamps	3,000	1.01	0.42	0.60	3,044	1,254	1,790
Roosevelt Schools NY	Roosevelt tigh School	2491		Halways H5	11	11	0.0534	0.0220	1xa, 2 -Lamp T , EM	LEED int Diviver Lamps, (2) 4 Lamps	8,760	0.59	0.24	0.35	5,146	2,120	3,026
Roosevelt Schools Mr	Roosevelt tigh School	2501		Halways H5	14	14	0.0280	0.0130	L26w	LED Retrofit an Kit, 6 nch, NLO	3,000	39	0.18	0.21	, 176	546	630
Roosevelt Schools NY	Roosevelt tigh School	2511		Halways H5	2	2	0.0280	0.0130	Pl $26 \mathrm{w}, \mathrm{Em}$	LED Retrofit Can Kit. 6 hnch, NLO	3,000	0.06	0.03	0.03	168	78	90
Roosevelt Schools NY	Roosevelt tigh School	2521		Halways H5	3	3			Exit Sign - LED, BB	will Not be Retroft	8,760						
Roosevelt Schools NY	Roosevelt High School	2531		Halways H5	4	4			Exit Sign -LED, bB	will Not be Retroft	8.760						
Roosevelt Schools NY	Roosevelt tigh School	2541		Halways $\mathrm{H6}$	6	6	0.0534	0.0220	1x4, --Lamp T8	LED int. Diver Lamps, (2) 4 Lamps	3,000	0.32	0.13	0.19	991	396	565
Roosevelt Schools NY	Roosevelt tigh School	2551		Halways $\mathrm{H6}$	4	4	0.0534	0.0220	1xa, 2 -Lamp T , EM	LEED int Diviver Lamps, (2) 4 Lamps	3,000	0.21	0.09	0.13	${ }_{641}$	264	377
Roosevelt Schools NY	Roosevelt High School	2561		Halways H6	2	2			Exit Sign -Led, bs	will Not be Retroft	8.760						
Roosevelt Schools NY	Roosevelt tigh School	$257 / 2$		Sever Room 3	2	2	0.0534	0.0250	1x4, -- -amp T8	Led Standard Wrap, NLO, 1 x4, Jack Chain Mount	750	0.11	0.05	0.06	${ }^{80}$	38	${ }^{43}$
Roosevelt Schools NY	Roosevelt tigh School	2581		Classroom C170	12	12	0.0534	0.0220	1x4, -2-amp ${ }^{\text {e }}$	LEED int Diviver Lamps, (2) 4 Lamps	2,119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools Mr	Roosevelth tigh Schol	2591		Classroom C 168	12	12	0.0534	0.0220	1x4, -2-amp T8	LED int. Divier Lamps, (2) 4 Lamps	2.119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools NY	Roosevelt tigh School	2601		Classroom C166	12	12	0.0534	0.022	1x4, -2-amp T8	LED int. Diviver Lamps, (2) 4 Lamps	2.119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools NY	Roosevelt tigh School	2611		Boys Room Br5	4	4	0.0534	0.0220	1x, 2-2-amp T8	LEED int Diviver Lamps, (2) 4 Lamps	1,760	0.21	0.09	0.13	376	155	221
Roosevelt Schools NY	Roosevelt tigh School	2621		Boys Room Br5	2	2	0.0280	0.0130	CFPL 260 , EM	LED Retrofit an Kit, 6 nch, NLO	1,760	0.06	0.03	0.03	${ }^{99}$	46	53
Roosevelt Schools NY	Roosevelt tigh School	2631		Electrical Room C162	1		0.0534	0.0250	1x4, -2-amp T8	Led Standard Wrap, MLo, 1 x4, Jack Chain Mount	750	05	0.03	. 03	${ }^{40}$	19	21
Roosevelt Schools NY	Roosevelt tigh School	2641		Custodian Closet C 160			0.0534	0.0250	1x4, -2-amp $\mathrm{T}^{\text {d }}$	LeD Standard Wrap, NLO, 1x4	600	0.05	0.03	0.03	${ }_{32}$	15	17

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Buiding Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { afy } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { aty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ k w \end{gathered}$	$\begin{gathered} \text { Total Post } \\ k w \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \\ \hline \end{gathered}$	Total kWn Existing	Total kWh Proposed	$\begin{gathered} \text { Total kWh } \\ \text { Saved } \end{gathered}$
Roosevelt Schools NY	Roosevelt tigh School	2651		Girls Room Grs	4	4	0.0534	0.0220	1x4, -2-amp T8	LEED int. Diver Lamps, (2) 4 Lamps	1,760	0.21	0.09	0.13	376	155	221
Rosesvelt Schools NY	Roosevelt High School	2661		Girls Room Gr5	2	2	. 0288	0.0130	w, em	LED Retrofit Can Kit, 6 nch, NLO	1760	0.06	0.03	0.03	99	46	${ }_{5}$
Sosevelt Schools NY	Roosevelt tigh School	2671		Classroom C156	12	12	0.534	0.0220	app	LED int. Diver Lamps, (2) 4 Lamps	2.119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools NY	Roosevelt High School	2681		Classroom C 154	12	12	0.0534	0.0220	1x4, -2-amp ${ }^{\text {e }}$	LEED int Diviver Lamps, (2) 4 Lamps	2,119	0.64	0.26	0.38	1,358	559	798
Rosesevel Schools NY	Roosevelth High School	2691		Classroom C 152	12	12	0.0534	0.0220	x4, 2-Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	2.19	0.64	0.26	0.38	, 358	559	798
Roosevelt Schools Mr	Roosevelt tigh School	2701		Classroom C151	12	12	0534	0.0220	1xa, -2-amp T8	LED int. Diver Lamps, (2) 4 Lamps	2.119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools NY	Roosevelt tigh School	2711		Classroom C153	12	12	0.0534	0.0220	1x4, -2-amp ${ }^{\text {ct }}$	LED int. Diver Lamps, (2) 4 Lamps	2,119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools Nr	Roosevelt High School	2721		Classroom C155	12	12	0.0534	0.0220	1x4, -2-amp T8	LED Int. Divier Lamps, (2) 4 Lamps	2.119	64	0.26	0.38	1,358	559	798
Roosevelt Schools Mr	Roosevelt tigh School	2731		Classroom C157	11	11	0.0534	0.022	4, 2-Lamp T8	LEED int Diviver Lamps, (2) 4 Lamps	2.119	0.59	0.24	0.35	1,245	513	732
Roosevelt Schools NY	Roosevelt tigh School	2741		Classroom C157a	1	1	. 0534	0.022	1xt, 2--amp T8	LED int. Divier Lamps, (2) 4 Lamps	2.079	0.05	0.02	0.03	111	46	65
Roosevelt Schools NY	Roosevelt High School	2751		Classroom C159	11	11	0.0534	0.0220	1x4, -2-amp T8	LED Int. Divier Lamps, (2) 4 Lamps	2.119	0.59	0.24	0.35	1,245	513	732
Roosevelt Schools NY	Roosevelt tigh School	2761		Classroom C161	11	11	0.0534	0.0220	4, 2 -L-amp T8	LED Int. Diver Lamps, (2) 4 Lamps	2.119	0.59	0.24	0.35	1,245	513	${ }_{7} 7$
Roosevelt Schools NY	Roosevelt tigh School	2771		Classroom C163	11	11	0.0534	0.0220		LEED int Diviver Lamps, (2) 4 Lamps	2.119	0.59	0.24	0.35	1,245	513	${ }_{73}$
Roosevelt Schools NY	Roosevelt High School	2781		Classroom C165	11	11	0.0534	0.0220	1x4, --2amp T8	LED int. Divier Lamps, (2) 4 Lamps	19	0.59	0.24	0.35	1,245	513	732
Roosevelt Schools Mr	Roosevelt tigh School	2791		Halways H7	12	12	0.0534	0.0220	4, 2 -Lamp 78	LED Int. Diviver Lamps, (2) 4 Lamps	3,750	0.64	0.26	0.38	2,403	990	1,413
Roosevelt Schools NY	Roosevelt tigh School	2801		Halways H7	6	6	0.0534	0.0220	1xa, 2 -Lamp T , EM	LEED int Diviver Lamps, (2) 4 Lamps	8,760	0.32	0.13	0.19	2,807	1,156	1,650
Roosevelt Schools Nr	Roosevelt tigh School	2811		Halways H7	11	11	0.0280	0.0130	L26w	LED Retrofit an Kit, 6 nch, NLO	3,000	0.31	0.14	0.17	${ }^{924}$	429	495
Roosevelt Schools Mr	Roosevelt tigh School	2821		Halways H7	4	4	0.0280	0.0130	Pl $26 \mathrm{w}, \mathrm{Em}$	LED Retrofit Can Kit, 6 nch, NLO	3,000	0.11	0.05	0.06	336	156	180
Roosevelt Schools NY	Roosevelt tigh School	2831		Halways H7	3	3			Exit Sign - -ED, BB	will Not be Retroft	8,760						
Roosevelt Schools Mr	Roosevelt tigh School	2841		Halways н8	6	6	0.0534	0.0220	1x4, -2-amp T8	LED int. Diviver Lamps, (2) 4 Lamps	3,000	${ }_{0} .32$	0.13	0.19	961	396	565
Roosevelt Schools Mr	Roosevelt tigh School	2851		Halways н8	3	3	0.0534	0.0220	1xa, -2-lamp 78, EM	LED int. Diver Lamps, (2) 4 Lamps	3,000	0.16	0.07	0.09	481	198	283
Roosevelt Schools NY	Roosevelt tigh School	2861		Halways $\mathrm{H8}$	3	3			Exit Sign-LED, BB	will Not be Retroft	8,760						
Roosevelt Schools NY	Roosevelt High School	2871		Halways H9	2	2	0.0534	0.0220	1xt, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	3,000	0.11	0.04	0.06	320	132	188
Roosevelt Schools NY	Roosevelt tigh School	2881		Halways H9	1	1	0.0534	0.0220	1xa, -2-Lamp TB , EM	LED int. Diver Lamps, (2) 4 Lamps	3,000	0.05	0.02	0.03	160	66	94
Roosevelt Schools NY	Roosevelt tigh School	2891		Halways H9	1	1			Exit Sign - LED, BB	will Not be Retroft	8,760						
Roosevelt Schools NY	Roosevelt High School	2901		Kitchen 027b	9	9	0.0534	0.0220	1x4, --Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	1,280	0.48	0.20	0.28	615	253	362
Roosevelt Schools NY	Roosevelt tigh School	2911		Kitchen 027b	18	18	0.0280	0.0130	PL 26 w	LED Retrofit Can Kiti, inch, NLO	1,280	0.50	0.23	0.27	645	300	346
Roosevelt Schools NY	Roosevelt tigh School	2921		Kitchen 027b	25	25	0.0450	. 0450	Ceramic MH 39w	will Not be Retroft	1,280	13	1.13		440	1,440	
Roosevelt Schools NY	Roosevelt High School	2931		Kithen 027b Oven Hood	4	4	0.0534	0.0220	1x4, --Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,280	0.21	0.09	0.13	273	113	161
Roosevelt Schools NY	Roosevelt tigh School	2941		Kithen 027b	1	1			Exit Sign - Led, bB	will Not be Retroft	8,760						
Roosevelt Schools NY	Roosevelt tigh School	2951		Kitchen 027b	9	9	0.1057	440	X4, 4-Lamp T8	LEED int Diviver Lamps, (4) 4 Lamps	1,280	0.95	0.40	0.56	218	507	711
Roosevelt Schools NY	Roosevelt tigh School	2961		Kithenen 027b Dven Hood	4	4	0.0445	0.0220	1x3, 2-Lamp T8	LED Int. Diver Lamps, (2) $3^{\text {L Lamps }}$	1,280	0.18	0.09	0.09	228	113	115
Roosevelt Schools NY	Roosevelt High School	2971		Storage 0270	1		0.0534	0.022	x4, 2-Lamp T8	LeD int. Diviver Lamps, (2) 4 Lamps	1,280	0.05	0.02	0.03	6^{68}	28	40
Roosevelt Schools NY	Roosevelt tigh School	2981		Storae 027d			0.079	0.0330	2x4, --Lamp T8	LED Int. Diviver Lamps, (3) 4 Lamps	1,280	0.08	0.03	0.05	102	42	60

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { Qty } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Exising Descripion	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{aligned} & \text { Total Post } \\ & \text { kW } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total kWn Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools NY	Roosevelt tigh School	2991		office 027e	2	2	0.0534	0.0240	$2 \times 4,2$-Lamp T , BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	4,000	0.11	0.05	0.06	${ }_{427}$	192	235
Oosesvelt Schools NY	Roosevelt High School	3001		Wakkin Cooler	1	1	0.054	0.0220	4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XL	750	. 05	. 02	0.03	${ }^{40}$	17	24
Sosevelt Schools NY	Roosevelt tigh School	3011		in freezer	2	2	0.534	0.022	amp	LED Int. Diviver Lamps, (2) 4 Lamps, XL	750	0.11	0.04	0.06	80	33	47
Roosevelt Schools NY	Roosevelt High School	3021		Cafeeria K27	42	42	0.0273	0.0110	1x4, --Lamp ${ }^{\text {e }}$	LED Int. Diver Lamp, (1) 4 Lamp	5,725	1.15	0.46	0.68	6,564	2,645	3,919
Rosesevel Schools NY	Roosevelth High School	3031		Cafeereria 27	35	35	0.0380	. 0145	K4, 1-Lamp T5E	LED Int. Diviver Lamp, (1) 4 T5 HE Lamp	725	. 33	0.51	0.82	7.614	2,905	4.709
Roosevelt Schools Mr	Roosevelt tigh School	3041		Receiving 29	24	24	0534	0.0250	-amp T8	Led Standard Wrap, MLo, 1 x4, Jack Chain Mount	600	28	0.60	0.68	769	360	409
Roosevelt Schools NY	Roosevelt tigh School	3051		Fire Sprinker Room	2	2	0.0534	0.0250	1x4, -2-amp ${ }^{\text {es }}$	Led Standard Wrap, NLO, 1 x4, Jack Chain Mount	600	0.11	0.05	0.06	64	30	34
Roosevelt Schools Nr	Roosevelt High School	3061		Receiving office 029 a	1	1	0.0795	0.0330	2x, 3 --amp T8	LED Int. Diviver Lamps, (3) 4 Lamps	1,760	08	0.03	0.05	${ }^{140}$	58	82
Roosevelt Schools Mr	Roosevelt tigh School	3071		Receiving office 029	1	1	0.079	30	4, 3-Lamp T8	LEED int Divier Lamps, (3) 4 Lamps	1,760	0.08	0.03	0.05	140	58	82
Roosevelt Schools NY	Roosevelt tigh School	3081		Halways H 10	4	4	0.0534	0.0220	1x, 2--Lamp T8	LED int. Diver Lamps, (2) 4 Lamps	3,000	0.21	0.09	0.13	641	264	377
Roosevelt Schools NY	Roosevelt High School	3091		Halways H10	3	3	0.0534	0.0220	1xt, -2-amp T8, EM	LED int. Divier Lamps, (2) 4 Lamps	3,000	0.16	0.07	0.09	${ }^{481}$	198	283
Roosevelt Schools NY	Roosevelt tigh School	3101		Halways H 10	2	2			Exit Sign-LED, BB	will Not be Retroft	8,760		.		-		
Roosevelt Schools NY	Roosevelt tigh School	3111		Halways H11	3	3	0.0534	0.0220	1x4, -2-amp ${ }^{\text {d8 }}$	LEED int. Diver Lamps, (2) 4 Lamps	3,000	0.16	0.07	0.09	481	198	283
Roosevelt Schools NY	Roosevelt High School	3121		Halways H 11	14	14	0280	0.0130	CF PL 26 w	LED Retrofit Can Kit, 6 hnch, NLO	1,760	0.39	0.18	0.21	690	320	370
Roosevelt Schools Mr	Roosevelt tigh School	3131		Halways H11	8	8	0.0280	0.0130	Pl $26 \mathrm{w}, \mathrm{Em}$	LED Retrofit Can Kit, 6 hnch, NLO	1,760	0.22	0.10	0.12	394	183	211
Roosevelt Schools NY	Roosevelt tigh School	3141		Halways H11	6	6	0.0620	0.0250	$1 \times 4,1$-Lamp T 5 H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	1,760	0.37	0.15	0.22	655	264	391
Roosevelt Schools Nr	Roosevelt tigh School	3151		Halways H11	15	15	0.0860	0.0270	PrL(2) 42 W	LED Retrofit an Kit, 10 hcch, HLO , H1	1,760	1.29	0.41	0.89	2.270	713	1,558
Roosevelt Schools Mr	Roosevelt tigh School	3161		Halways H11	6	6	0.020	0.0070	PL 18w	LED Retrofit an Kit, 4 nch, NLO	1,760	0.12	. 04	0.08	211	74	${ }_{137}$
Roosevelt Schools NY	Roosevelt tigh School	3171		Halways H11	3	3			Exts Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools Mr	Roosevelt tigh School	3181		Halways $\mathrm{H11}$ Display Case	3	3	0.0620	0.0250	1×4, 1-Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	3,750	19	0.08	0.11	698	281	416
Roosevelt Schools Mr	Roosevelt tigh School	3191		Halways t11 Display Case	3	3	0.0534	0.0220	1x4, -2-amp T8	LED int. Diver Lamps, (2) 4 Lamps	750	0.16	0.07	0.09	601	248	353
Roosevelt Schools NY	Roosevelt tigh School	3201		Boys Room Br5	4	4	0.0534	0.0220	1x4, 2--amp T8	LED int. Divier Lamps, (2) 4 Lamps	1,760	0.21	0.09	0.13	${ }^{376}$	155	221
Roosevelt Schools NY	Roosevelt High School	3211		Boys Room Br5	1	1	0.0500	0.066	112, 2-Lamp T12, EM	LED Int. Divier Lamps, (2) 2 Lamps	1,760	0.05	0.02	0.03	${ }_{88}$	28	60
Roosevelt Schools NY	Roosevelt tigh School	3221		Custodian Closet Jc6	1	1	0.0534	0.0250	1x4, 2-Lamp T8	Led Standard Wrap, NLO, 1 x4, Jack Chain Mount	600	0.05	0.03	0.03	${ }^{32}$	15	17
Roosevelt Schools NY	Roosevelt tigh School	3231		Giris Room Gi4	4	4	0.0534	0.0220	1x, 2-2-amp T8	LEED int Diviver Lamps, (2) 4 Lamps	1,760	0.21	0.09	0.13	376	155	221
Roosevelt Schools NY	Roosevelt High School	3241		Giris Room Gr4	1	1	0.0280	0.0130	CFPL 266 , Em	LED Retrofit Can Kit, 6 nch, NLO	1,760	0.03	0.01	0.02	49	23	26
Roosevelt Schools NY	Roosevelt tigh School	3251		Loby	3	3	0.0280	0.0130	PL 26 w , EM	LED Retrofit Can Kit 6 hnch, NLO	1,760	0.08	0.04	0.05	148	69	79
Roosevelt Schools NY	Roosevelt tigh School	3261		Loboy	6	6	0.0280	0.0130	CF PL 26w	LED Retrofit Can Kit, 6 hnch, NLO	1,760	0.17	0.08	0.09	296	137	158
Roosevelt Schools NY	Roosevelt High School	3271		Lobby	2	2			Exit Sign - Led	will Not be Retroft	8.760						
Roosevelt Schools NY	Roosevelt tigh School	3281		Foyer 2 Foz	3	3	0.0280	0.0130	PL26w	LED Reerofit Can Kit, 6 hnch, NLO	1,760	0.08	0.04	0.05	148	69	79
Roosevelt Schools NY	Roosevelt tigh School	3291		Elevator Room	2	2	0.0534	0.0250	1x4, -2-amp T8	LeD Standard Wrap, MLo, 1 x4, Jack Chain Mount	750	0.11	0.05	0.06	80	38	${ }^{43}$
Roosevelt Schools NY	Roosevelt tigh School	3301		Open office 010	30	30	0.0280	0.0130	FPL 26 w	LED Retrofit Can Kit 6 hnch, NLO	3,200	${ }^{84}$	0.39	0.45	2.688	1,248	1,440
Roosevelt Schools NY	Roosevelt tigh School	3311		Office 010a	2	2	0.0534	. 0240	X4, 2-Lamp T8	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	600	0.11	0.05	0.06	${ }^{64}$	29	35
Roosevelt Schools NY	Roosevelt tigh School	${ }_{32} 1$		Office 0 100	2	2	0.0534	0.0240	2x4, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver DIM	3,200	0.11	0.05	0.06	342	154	188

Roosevelt UFSD, NY
Exhibit D-5-1
ECM 1 - LED Lighting and Lighting Controls Upgrade
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { Qty } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Description	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{aligned} & \text { Total Post } \\ & \text { kW } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total KWh Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools NY	Roosevelt tigh School	3331		Office 010c	3	3	0.0534	0.0240	2xa, -2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	3,200	0.16	0.07	0.09	513	230	282
Sosesell Schools NY	Roosevelt High School	3341		Office 010d	6	6	534	0.0240	4, 2-L-Lamp T, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	200	0.32	0.14	0.18	. 225	461	564
Sosevelt Schools NY	Roosevelt tigh School	3351		office 01001	1	1	0.0534	0.0220	amp	LED int. Diver Lamps, (2) 4 Lamps	704	05	${ }^{2}$	0.03	${ }^{38}$	15	22
Roosevelt Schools NY	Roosevelt High School	3361		Office 10 Of	1	1	0.079	0.0330	2x4, 3 -Lamp T8	LEED int Diviver Lamps, (3) 4 Lamps	704	0.08	0.03	0.05	56	23	${ }^{3}$
Rosesevel Schools NY	Roosevelth High School	3371		Boys Room Bre	4	4	0.0534	0.0220	4, 2-Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	,760	0.21	0.09	0.13	${ }^{376}$	155	221
Roosevelt Schools Mr	Roosevelt tigh School	3381		Boys Room Brir	1	1	0.0280	0.030	CF PL 26 W	LED Retrofit Can Kit, 6 hnch, NLO	1,760	0.03	0.01	0.02	${ }^{49}$	23	26
Roosevelt Schools NY	Roosevelt tigh School	3391		Giris Room	4	4	0.0534	0.0220	1x, 2--Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps	1,760	0.21	0.09	0.13	376	155	221
Roosevelt Schools Nr	Roosevelt High School	3401		Giri's Room	1	1	0.0280	0.0130	26w	LED Retrofit Can Kit, 6 hrch, NLO	704	0.03	0.01	0.02	20	9	11
Sosevelt Schools NY	Sosevelt High School	3411		Open Office 055	2	2	544	0.0240	4, 2-L-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools NY	Roosevelt High School	3421		Open Oficice 055	3	3	0.0377	0.0160	[x2, 2-Lamp T, BL	LED Type C Lamps, (2) 2' Lamp, LED Driver, Dimming	3,200	0.10	0.05	0.05	304	154	151
Roosevelt Schools NY	Roosevelt High School	3431		Office 055a	2	2	0.054	0.0280	2x4, --Lamp T8	LED Type C Lamps, (2) 4 Lamp, LEe diviver	3,200	0.11	0.06	0.05	${ }^{342}$	179	163
Roosevelt Schools Mr	Roosevelt tigh School	3441		office 054	2	2	0.0534	0.0240	4, 2-L-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools NY	Roosevelt tigh School	3451		Office 055b	2	2	0.0534	0.0240	2xa, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools NY	Roosevelt High School	3461		Office 058	4	4	0.534	0.0240	2xt, 2-Lamp 7 , BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	3,200	0.21	0.10	0.12	684	307	376
Roosevelt Schools Mr	Roosevelt tigh School	3471		Open ofice 056	6	6	. 0534	. 0240	4, 2-L-Lamp T, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	3,200	0.32	0.14	0.18	,025	461	564
Roosevelt Schools NY	Roosevelt tigh School	3481		Office 056a	4	4	0.0534	0.0240	2xat, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	3,200	0.21	0.10	0.12	684	307	376
Roosevelt Schools Nr	Roosevelt tigh School	3491		Office 056b	1	1	0.0534	0.0220	1xt, -2-amp T8	LED int. Divier Lamps, (2) 4 Lamps	704	0.05	0.02	0.03	${ }^{38}$	15	22
Roosevelt Schools Mr	Roosevelt tigh School	3501		ofite 056a1	1	1	0.0280	0.0130	PL 26 w	LED Retrofit Can Kit, 6 hnch, NLO	600	0.03	0.01	0.02	17	8	
Roosevelt Schools NY	Roosevelt tigh School	3511		Jc7 030	1	1	0.0534	0.0220	1x, 2-2-amp T8	LEED int. Diver Lamps, (2) 4 Lamps	600	0.05	0.02	0.03	32	13	19
Roosevelt Schools Mr	Roosevelt tigh School	352 1		Staff Room 062	4	4	0.0534	0.020	x4, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	3,200	0.21	0.10	0.12	${ }_{684}$	307	376
Roosevelt Schools Mr	Roosevelt tigh School	3531		Open ofirie 064	6	6	0.0534	240	4, 2-L-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	3,200	0.32	0.14	0.18	,025	461	564
Roosevelt Schools NY	Roosevelt High School	3541		Open Office 064	2	2	0.0377	.0160	2, 2-L-Lamp Te, BL	${ }^{\text {LED Timpee C Lamps, (2) }}$ 2 Lamp, LED Diviver,	3,200	0.06	0.03	0.03	203	102	100
Roosevelt Schools NY	Roosevelt High School	3551		Office 064d	6	6	0.0534	0.0280	X4, 2-Lamp T8	LED Type C Lamps, (2) 4 Lamp, LEED Diviver	3,200	0.32	0.17	0.15	1,025	538	488
Roosevelt Schools NY	Roosevelt tigh School	3561		Office 064 c	2	2	0.0534	0.0240	2xt, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Divive, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools NY	Roosevelt tigh School	3571		Office 064b	2	2	0.0534	0.0240	2xa, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools NY	Roosevelt High School	3581		Office 0640	2	2	0.0534	0.02	x4, 2--2amp ¢8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	3.200	0.11	0.05	0.06	342	154	188
Roosevelt Schools NY	Roosevelt tigh School	3591		Office 064d	6	6	0.0534	0.0240	$2 \times 4,2-\operatorname{lamp}$ T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Divive, DIM	3,200	0.32	0.14	0.18	1,025	461	564
Roosevelt Schools NY	Roosevelt tigh School	3601		Open office 066	6	6	0.0534	0.0240	2xat, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	3,200	0.32	0.14	0.18	1,025	461	564
Roosevelt Schools NY	Roosevelt High School	3611		Office 066	2	2	0.0534	0.0240	x4, 2--2amp ¢8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools NY	Roosevelt High School	3621		Office 066b	4	4	0.0534	0.0240	2x4, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver DIM	3,200	0.21	0.10	0.12	684	307	376
Roosevelt Schools NY	Roosevelt tigh School	3631		Office 066 c	2	2	0.0534	0.0240	$2 \times 4,2$-Lamp T , BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools NY	Roosevelt tigh School	3641		Office 066 d	1	1	0.0795	0.0330	x4, 3-Lamp T8	LED Int. Divier Lamps, (3) 4 Lamps	3,200	0.08	0.03	0.05	54	106	149
Roosevelt Schools NY	Roosevelt tigh School	3651		Office 064 e	1		534	0.0240	<4, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	3,200	05	0.02	0.03	${ }^{171}$	77	94
Roosevelt Schools NY	Roosevelt tigh School	3661		Open oficie 057	16	16	0.0534	0.0240	$2 \times 4,2$-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	3,200	0.85	0.38	0.47	2,734	1.229	${ }_{1,50}$

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \mathrm{kN} \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	Total kWh Prooosed	Total kWh
Roosevelt Schools NY	Roosevelt High School	3671		Office 057a	2	2	0.0534	0.0240	$2 \times 4,2$-Lamp T , BL	LED Type C Lamps, (2)4 4 Lamp, LED Diviver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools Nr	Roosevelt High School	3681		Office 057b	1	1	0.0795	0330	4, 3-2-2mp T8	LED int. Diver Lamps, (3) 4 Lamps	3,200	0.08	0.03	0.05	254	106	149
Soseltt Schools NY	Roosevelt thig School	3691		Office 057c	6	6	0.0795	0.0330	2x4, 3-Lamp T8	LED int. Driver Lamps, (3) 4 Lamps	3,200	0.48	0.20	0.28	1,526	634	893
Roosevelt Schools NY	Roosevelt High School	3701		Office 057d	2	2	0.0795	0.0330	2x4, -Lamp T8	LED Int. Diviver Lamps, (3) 4 Lamps	600	0.16	0.07	0.09	95	40	56
Roosevelt Schools NY	Roosevelt High School	3711		Office 057d	2	2	0.0534	0.0240	44, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools MY	Roosevelt thig School	3721		Open office 054	6	6	0.0534	0.0240	Imp $\mathrm{T}^{\text {c }}$	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	3,200	0.32	. 14	0.18	1,025	461	564
Roosevelt Schools MY	Roosevelt tigh School	3731		Office 054a	2	2	0.0534	0.0240	2x4, 2-Lamp T8, BL	LED Type C Lamps, (2)4 Lamp, LED Diviver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools MY	Roosevelt High School	3741		fice 054 b	2	2	0.0534	0240	4, 2 - Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools NY	Roosevelt thigh School	3751		office 054c	2	2	0.0534	0240	4,2 -L-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools NY	Roosevelthigh School	3761		Open office 053	2	2	0.0534	0.0240	2x4, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools NY	Roosevelt High Schol	3771		Peno fifice 053	1	1	0.0377	0160	2, 2.-Lamp T8, BL, EM	LED Type C Lamps, (2) 2' Lamp, LED Driver, Dimming	3,200	0.03	0.02	0.02	101	51	50
Roosevelt Schools NY	Roosevelt tigh School	3781		Office 053a	3	3	0.0534	0.0240	2 -Lamp T8, BL	LED Type C Lamps, (2)4 Lamp, LED Diviver, DIM	3,200	0.16	0.07	0.09	513	230	282
Roosevelt Schools MY	Roosevelt High School	3791		Office 053b	4	4	0.0534	0.0240	2xa, 2-Lamp T8, BL	LED Type C Lamps, (2)4 4 Lamp, LED Diviver, DIM	3,200	0.21	0.10	0.12	684	307	376
Roosevelt Schools MY	Roosevelt High School	3801		Office 053c	4	4	0.0534	. 0240	2xt, 2-Lamp 78 , BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	3,200	0.21	0.10	0.12	684	307	376
Roosevelt Schools NY	Roosevelt High School	381.		Open office 051	2	2	0.0377	0.0160	2.-Lamp T8, BL	LED Type C Lamps, (2) 2' Lamp, LED Driver, Dimming	3,200	0.06	0.03	0.03	203	102	100
Roosevelt Schools MY	Roosevelt tigh School	3821		Open office 051	4	4	0.0534	0.0240	2xa, 2-Lamp T8, BL	LED Type C Lamps, (2)4 4 Lamp, LED Diviver, DIM	3,200	0.21	0.10	0.12	684	307	376
Roosevelt Schools NY	Roosevelth tigh School	3831		Open office 051	4	4	0.0280	0.0130	26w	LED Retofotit an Kit, 6 inch, , NLO	3,200	0.11	0.05	0.06	358	166	192
Roosevelt Schools MY	Roosevelt tigh School	3841		Office 051b	1	1	0.0280	0.0130	PL 26 w	LED Retofotit an Kit, 6 inch, NLO	3,200	0.03	0.01	0.02	90	42	48
Roosevelt Schools MY	Roosevelt tigh School	3851		Office 051 Exam1	2	2	0.0534	0.0240	2xa, 2-Lamp T8, BL	LED Type C Lamps, (2)4 4 Lamp, LED Diviver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools MY	Roosevelth tigh School	3861		sfice N_{p}	1	1	0.0534	0.0240	x4, 2-Lamp te, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	3,200	0.05	0.02	0.03	171	77	94
Roosevelt Schools NY	Roosevelth tigh School	3871		Social Work	2	2	0.0534	2202	Lamp Ts , bL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools NY	Roosevelth tigh School	3881		Telcom 2	1	1	0.0534	0.0250	1x4, -2-amp T8	LED Slandard Wrap, NLO, 1x4, Jack Chain Mount	750	0.05	0.03	0.03	40	19	21
Roosevelt Schools MY	Roosevelt High School	3891		Electrical Room 019	1	1	0.0534	0.0250	1x, 2--Lamp T8	LED Standard Wrap, NLO, 1x4, Jack Chain Mount	750	0.05	0.03	0.03	40	19	21
Roosevelt Schools NY	Roosevelt tigh School	3301		Boys Room Br8	1	1	0.0534	0.0220	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,760	0.05	0.02	0.03	94	39	55
Roosevelt Schools MY	Roosevelt High School	3911		Open office 015	6	6	0.0534	0.0240	2x4, 2-Lamp T , BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	3,200	0.32	0.14	0.18	1,025	461	564
Roosevelt Schools MY	Roosevelt High School	3321		Office 0 15 a	1	1	0.0534	0.0220	1x, 2--Lamp T8	LED int. Driver Lamps, (2) 4 Lamps	3,200	0.05	0.02	0.03	171	70	100
Roosevelt Schools MY	Roosevelt tigh School	3931		Office 0150	2	2	0.0534	0.0240	amp T ,,	LED Type C Lamps, (2)4 L Lamp, LED Diviver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools MY	Roosevelt High School	3341		Office 015b	2	2	0.0534	0.0240	2xa, 2-Lamp T8, BL	LED Type C Lamps, (2)4 4 Lamp, LED Diviver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools MY	Roosevelt High School	3951		Office 015d	2	2	0.0534	0.0240	2x4, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools MY	Roosevelt tigh School	3961		Office 015e	1	1	0.0534	0.022	x4, 2-Lamp 78	LED int. Driver Lamps, (2) 4 Lamps	3,200	0.05	0.02	0.03	171	70	100
Roosevelt Schools NY	Roosevelt High School	3971		Giris Room Brs	1	1	0.0534	0.0220	1x4, -2-1amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,760	0.05	0.02	0.03	94	39	55
Roosevelt Schools NY	Roosevelth tigh School	3981		Halways H12	12	12	0.0534	0.022	1x4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps	3,000	0.64	0.26	0.38	192	792	1,130
Roosevelt Schools NY	Roosevelt High School	3991		Halmays H 12	7	7	0.0534	0.0220	¢4, 2-L-Lamp T\%, ЕM	LED lnt. Diver Lamps, (2) 4 L Lamps	8,760	${ }_{0} .37$	0.15	0.22	3,274	, 349	1,225
Roosevelt Schools MY	Roosevelt High School	4001		Halmays H 12	2	2	0.0280	0.0130	CF PL 26 w	LED Retroft Can Kit, 6 Inch, NLO	3,000	0.06	0.03	0.03	168	78	90

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { Qty } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Exising Descripion	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{aligned} & \text { Total Post } \\ & \text { kW } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total KWh Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools Nr	Roosevelt tigh School	4011		Halways H12	3	3			Exts Sign - Led	will Not be Retroft	8,760						
Rosesvelt Schools NY	Roosevelt High School	4021		Classroom 014	17	17	. 0534	. 0220	4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps	119	0.91	0.37	0.53	. 924	93	1,131
Sosevelt Schools NY	Roosevelt tigh School	4031		sssroom 016	17	17	0.0534	0.0220	mp	LED int. Diver Lamps, (2) 4 Lamps	2.119	0.91	0.37	0.53	. 924	793	1,131
Roosevelt Schools NY	Roosevelt tigh School	4041		Classroom 016a	3	3	0.0795	0.0330	2x4, -Lamp T8	LEED int Diviver Lamps, (3) 4 Lamps	2,119	0.24	0.10	0.14	505	210	296
Rosesevel Schools NY	Roosevelth High School	4051		Classroom 016a	1	1	0.0795	0.0330	<x, 3-Lamp T8, еM	LED int. Divier Lamps, (3) 4 Lamps	2.119	. 08	0.03	0.05	168	70	99
Roosevelt Schools Mr	Roosevelt tigh School	4061		Classroom 016b	5	5	0.079	30	2xt, --2amp T8	LED int. Diver Lamps, (3) 4 Lamps	2.119	0.40	0.17	0.23	842	350	493
Roosevelt Schools NY	Roosevelt tigh School	$407 / 1$		Electrical Room 020	2	2	0.0534	0.0250	1x4, -2-amp T8	Led Standard Wrap, NLO, 1 x4, Jack Chain Mount	750	0.11	0.05	0.06	8^{80}	38	${ }^{43}$
Roosevelt Schools Nr	Roosevelt High School	4081		Classroom 022	11	11	0.054	0.0220	x4, 2-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	2.119	59	0.24	0.35	1,245	513	${ }_{732}$
Roosevelt Schools Mr	Roosevelt tigh School	4091		Classroom 022	12	12	0.0534	0.0220	4, 2-L-Lamp T8	LEED int. Diver Lamps, (2) 4 Lamps	2.119	0.64	0.26	0.38	1,358	559	798
Roosevelt Schools NY	Roosevelt tigh School	4101		Classoom 022	1	1	0.0280	0.0130	CF PL 26w	LED Retrofit Can Kit, 6 nch, NLO	2.119	0.03	. 01	0.02	5_{5}	28	32
Roosevelt Schools NY	Roosevelt High School	4111		Classroom 024	2	2	0.0795	0.0330	2x, 3 --amp T8	LED Int. Divier Lamps, (3) 4 Lamps	2.119	16	0.07	0.09	${ }^{337}$	140	197
Roosevelt Schools NY	Roosevelt tigh School	4121		Custodian Locker Room	6	6	0.0534	0.022	4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	750	${ }_{0} .32$	0.13	0.19	240	99	141
Roosevelt Schools NY	Roosevelt tigh School	4131		Custodian Locker Room	1	1			Exit Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools NY	Roosevelt High School	4141		Custodian Batroom	1	1	0.0534	0.0220	1x4, --2amp T8	LED int. Diviver Lamps, (2) 4 Lamps	750	0.05	0.02	0.03	40	17	24
Roosevelt Schools Mr	Roosevelt tigh School	4151		Noc Room	6	6	. 0534	0.022	4, 2-Lamp 78	LED int. Divier Lamps, (2) 4 Lamps	750	0. 32	0.13	0.19	240	99	141
Roosevelt Schools NY	Roosevelt tigh School	4161		Noc Room	2	2	0.0534	0.0240	2xa, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools Nr	Roosevelt tigh School	4171		Noc Room	2	2	0.0534	. 0240	2xt, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	3,200	0.11	0.05	0.06	${ }^{342}$	154	188
Roosevelt Schools Mr	Roosevelt tigh School	4181		Noc Room	9	9	0.0534	240	x4, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	3,200	0.48	0.22	.26	,538	691	847
Roosevelt Schools NY	Roosevelt High School	4191		Noc Room	3	3	0.0377	0.0160	2x2, 2-Lamp T8, BL	LED Type C Lamps, (2) 2' Lamp, LED Driver, Dimming	3,200	0.10	0.05	0.05	304	154	151
Roosevelt Schools Mr	Roosevelt tigh School	4201		Classroom 034	20	20	0.0534	0.022	X4, 2-Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	2.119	1.07	0.44	0.63	2.263	932	1,331
Roosevelt Schools Mr	Roosevelt tigh School	4211		Weightrom 036	18	18	0.0795	0.0330	1x4, --Lamp T8	LED int. Diver Lamps, (3) 4 Lamps	2.119	1.43	0.59	0.84	3,032	1,259	1,774
Roosevelt Schools NY	Roosevelt tigh School	422		Weightoom 036	2	2			Exit Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools NY	Roosevelt High School	4231		Weightroom 036 a	1	1	0.0534	0.0220	x4, 2-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	19	0.05	0.02	0.03	${ }_{13}$	47	67
Roosevelt Schools NY	Roosevelt tigh School	${ }_{424} 1$		office 038	2	2	0.054	. 0240	2xt, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diviver, im	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools NY	Roosevelt High School	4251		Office 038	1	1	0.0377	0.0160	22, 2-Lamp T, BL	LED Type C Lamps, (2) 2' Lamp, LED Driver, Dimming	3,200	0.03	0.02	. 02	101	51	50
Roosevelt Schools NY	Roosevelt High School	4261		office 038e	1	1	0.0534	0.0220	2xt, -- -amp T8	LED Int. Divier Lamps, (2) 4 Lamps	3.200	0.05	0.02	0.03	171	70	100
Roosevelt Schools NY	Roosevelt tigh School	${ }_{427} 1$		Office 038b	2	2	0.0534	0.0240	2xt, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	3,200	0.11	0.05	0.06	342	154	188
Roosevelt Schools NY	Roosevelt tigh School	4281		Office 038d	4	4	0.0534	0.0240	2xt, 2-Lamp T8, BL	LED Type C Lamps, (2) 4 Lamp, LED Diver, DIM	3,200	0.21	0.10	0.12	684	307	376
Roosevelt Schools Mr	Roosevelt High School	4291		Office 038 c	2	2	0.0534	0.0220	2xt, -- -amp T8	LED int. Divier Lamps, (2) 4 Lamps	3,200	0.11	0.04	0.06	342	141	201
Roosevelt Schools NY	Roosevelt tigh School	4301		Batrroom 038t	1	1	0.0534	0.022	1xt, -2-amp T8	LED int. Divier Lamps, (2) 4 Lamps	3,200	0.05	0.02	0.03	171	70	100
Roosevelt Schools NY	Roosevelt tigh School	4311		Annx Gym 040	24	24	0.4560	0.1420	(3) CF PL 70 W	Led High Bay, 200 Lumens, 2x2, OSF, WG, HCP	3,832	10.94	3.41	7.54	41,937	13,059	28,878
Roosevelt Schools NY	Roosevelt tigh School	4321		Annx Gym 040	4	4			Exit Sign - Leo	will Not be Retroft	8,760						
Roosevelt Schools NY	Roosevelt High School	4331		Annx Gym 040	4	4	0.0500	0.050	og Eyes	will Not be Retofoft	8,760	0.20	0.20		1,752	1,752	
Roosevelt Schools NY	Roosevelt tigh School	${ }_{434} 1$		Annx 6ym 040a	7	7	0.0534	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	3,221	0.37	0.15	0.22	1,204	496	708

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Buiding Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { afy } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { aty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Description	Total Hours	$\begin{gathered} \text { Total Pre } \\ k w \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Total Post } \\ \text { kW } \\ \hline \end{array}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \\ \hline \end{gathered}$	Total KWh Existing	Total kWh Proposed	$\begin{gathered} \text { Total kWh } \\ \text { Saved } \end{gathered}$
Roosevelt Schools NY	Roosevelt tigh School	4351		Electrical Room 042	1	1	0.0534	0.0250	1x4, -2-amp ${ }^{\text {d8 }}$	LeD Standard Wrap, MLO, 144, Jack Chain Mount	750	0.05	0.03	0.03	40	19	21
Rosesvelt Schools NY	Roosevelt High School	4361		Halways H13	4	4	. 0534	. 0220	4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps	3,000	0.21	. 09	0.13	${ }^{641}$	264	377
Sosevelt Schools NY	Roosevelt tigh School	${ }_{437} 1$		Hwas H 13	3	3	0.534	0.0220	Iamp T , Е EM	LED int. Divier Lamps, (2) 4 Lamps	8,760	0.16	0.07	0.09	1,403	578	825
Roosevelt Schools Mr	Roosevelt tigh School	4381		Halways H13	2	2			Exit Sign - Led	will Note Re Retoft	8,760						
Rosesevel Schools NY	Roosevelth High School	4391		Halway Closet	6	6	0.0534	0.0220	x4, 2-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	750	${ }_{0} .32$	0.13	0.19	${ }^{240}$	99	141
Roosevelt Schools Mr	Roosevelt tigh School	4401		Giri's Lockerroom 045	12	12	534	0.022	Lamp T8	LED int. Diver Lamps, (2) 4 Lamps	1,760	54	0.26	0.38	1,128	465	663
Roosevelt Schools NY	Roosevelt tigh School	4411		Giri's Lockerroom045	2	2			Extit Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools Nr	Roosevelt High School	4421		Giri's Lockerromo45c	2	2	0.0534	0.0220	x4, 2-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	60	11	0.04	0.06	${ }^{188}$	77	111
Roosevelt Schools Mr	Roosevelt tigh School	4431		Giri's Lockerromo45d	1	1	534	0.0220	4, 2-Lamp T8	LEED int Divier Lamps, (2) 4 Lamps	1,760	0.05	0.02	0.03	${ }^{94}$	39	55
Roosevelt Schools NY	Roosevelt tigh School	4441		Giri's Lockerromo45b	4	4	0.0534	0.0220	1xt, 2--amp T8	LED int. Diviver Lamps, (2) 4 Lamps	1,760	0.21	0.09	0.13	${ }^{376}$	155	221
Roosevelt Schools NY	Roosevelt High School	4451		Giris Lockerroom 045 s	2	2	0.0795	0.0330	2x, 3 --amp T8	LED Int. Divier Lamps, (3) 4 Lamps	1,760	16	0.07	0.09	${ }^{280}$	116	164
Roosevelt Schools NY	Roosevelt tigh School	4461		Sy's Lockerroom 039a	2	2	0.0534	0.0220	4, 2 -L-amp T8	LED int. Diver Lamps, (2) 4 Lamps	1,760	0.11	0.04	0.06	188	77	111
Roosevelt Schools NY	Roosevelt tigh School	4471		Boy's Lockerroom 039a	1	1	0.0534	0.0220	1x4, 2-Lamp T8	LED int Diviver Lamps, (2) 4 Lamps	1,760	0.05	0.02	0.03	94	39	55
Roosevelt Schools NY	Roosevelt High School	4481		Boy's Lockerroom 039a	12	12	0.054	0.0220	1x4, --Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	1,760	0.64	0.26	0.38	1,128	465	663
Roosevelt Schools Mr	Roosevelt tigh School	4491		lockerroom 039a	2	2			Exit Sign - Led	will Not be Retroft	8,760		.		-		
Roosevelt Schools NY	Roosevelt tigh School	4501		¢ym 033	36	36	0.4560	0.1670	(8) CF PL 7 Ow	LeD High Bay, 25K Lumens, 2x2, OSF, WG, HCP	3,832	16.42	6.01	10.40	62,906	23,038	39,88
Roosevelt Schools Nr	Roosevelt tigh School	4511		6ym 033	4	4			Exit Sign - Leo	will Not be Retroft	8,760						
Roosevelt Schools Mr	Roosevelt tigh School	452 ,		6ym 033	4	4	0.050	. 0500	Frog Eyes	will Not be Retroft	8,760	0.20	0.20		1,752	1,752	
Roosevelt Schools NY	Roosevelt tigh School	4531		¢ym 033	7	7	0.0534	0.0220	1x, 2-2-amp T8	LEED int Diviver Lamps, (2) 4 Lamps	3,221	0.37	0.15	0.22	1,204	496	708
Roosevelt Schools Mr	Roosevelt tigh School	454 /		6ym 033	4	4	0.0500	0.0500	rog Eyes	will Not be Retroft	8,760	20	0.20		,752	1,752	
Roosevelt Schools Mr	Roosevelt tigh School	4551		Gir's Room	3	3	0.0534	0.0220	1x4, --Lamp T8	LED int. Diver Lamps, (2) 4 Lamps	1,760	0.16	0.07	0.09	282	116	166
Roosevelt Schools NY	Roosevelt tigh School	4561		Gir's Room	1	1	0.0280	0.0130	CF PL 26w	LED Retrofit Can Kit, 6 nch, NLO	1,760	0.03	0.01	0.02	49	23	26
Roosevelt Schools NY	Roosevelt High School	4571		Jc036	1	1	0.0534	0.0220	x4, 2-Lamp 78	LED Int. Divier Lamps, (2) 4 Lamps	750	0.05	0.02	0.03	${ }^{40}$	17	24
Roosevelt Schools NY	Roosevelt tigh School	4581		Boy's Room	3	3	0.0534	0.0220	1x4, 2-Lamp T8	LED int. Diver Lamps, (2) 4 Lamps	1,760	0.16	0.07	0.09	282	116	166
Roosevelt Schools NY	Roosevelt tigh School	4591		Boy's Room	1	1	0.0280	0.0130	CF PL 26 w	LED Retrofit Can Kit, 6 nch, NLO	1,760	0.03	0.01	0.02	49	23	26
Roosevelt Schools NY	Roosevelt tigh School	4601		Office 041	2	2	0.0534	0.0220	1x4, 2--2amp T8	LED Int. Divier Lamps, (2) 4 Lamps	2.200	0.11	0.04	0.06	235	97	138
Roosevelt Schools NY	Roosevelt tigh School	4611		Office 041a	1	1	0.0534	0.0220	1x4, 2-2amp T8	LEED int. Diver Lamps, (2) 4 Lamps	2,200	0.05	0.02	0.03	117	48	69
Roosevelt Schools NY	Roosevelt tigh School	4621		office 042	2	2	0.0534	0.0220	1x4, -2-amp ${ }^{\text {a }}$	LED int Diviver Lamps, (2) 4 Lamps	2,200	11	0.04	0.06	${ }^{235}$	97	138
Roosevelt Schools NY	Roosevelt High School	4631		Office 042a	1	1	0.0534	0.0220	1xt, --2amp T8	LED Int. Divier Lamps, (2) 4 Lamps	2,200	0.05	0.02	0.03	117	48	${ }^{69}$
Roosevelt Schools NY	Roosevelt High School	4641		Outside Giris Room	2	2	0.0534	0.022	1x4, -2-amp T8	LED Int. Divier Lamps, (2) 4 Lamps	3,750	0.11	0.04	0.06	401	165	236
Roosevelt Schools NY	Roosevelt tigh School	4651		Outisid Boys Room	2	2	0.0534	0.0220	1x, 2-2-amp T8	LEED int Diviver Lamps, (2) 4 Lamps	3,750	11	0.04	0.06	401	165	236
Roosevelt Schools NY	Roosevelt tigh School	4661		Hallways H14 By Main Gym	80	80	0.0273	0.0110	1x4, --Lamp T8	LED int. Diviver Lamp, (1) 4 Lamp, xL	3,000	18	0.88	1.30	6,552	540	3,912
Roosevelt Schools NY	Roosevelt High School	4671		Halways H14 By Main Gym	18	18	280	0.0130	PL 26w	LED Retrofot Can Kit, 6 nch, MLO	3,000	50	.23	. 27	512	02	810
Roosevelt Schools NY	Roosevelt High School	4681		Halways H14 By Main Gym	4	4			Exit Sign - Leo	will Not be Retoroft	8,760						

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { aty } \\ \hline \end{gathered}$	$\begin{gathered} \text { Prooosed } \\ \text { Oty } \end{gathered}$	Existing kw	Proposed kw	Existing Description	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ k w \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|l\|l\|l\|l\|} \hline \text { Tost } \\ k w \end{array}$	$\begin{array}{\|c} \text { Sotal } \\ \text { Saved kw } \end{array}$	Total kWh Existing	Total kWh Proposed	Total kWh Saved
Roosevelt Schools NY	Roosevelt High School	4691		Hallway Display Case 2	12	12	0.0380	0.0145	1×1, 1-LILmp T5E	LED Int. Driver Lamp, (1) 4 ' 5 HEL Lamp	3,750	0.46	0.17	0.28	1,710	${ }_{653}$	1.058
Roosevelt Schools Nr	Roosevelt High School	4701		Halway Display Case 2	24	24	0.0534	0.020	x4, 2-Lamp 78	LED Int. Diviver Lamps, (2) 4 Lamps	3,750	1.28	0.53	0.75	4.806	1,980	2.826
Sosevelt Schools NY	Roosevelthigh School	4711		.ocker Room 026	13	13	0.0534	0.0220	1x4, 2-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	1,760	0.69	0.29	0.41	1.222	503	718
Roosevelt Schools NY	Roosevelt High School	4721		Boys Locker Room 026a	2	2	0.0534	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,760	0.11	0.04	0.06	188	77	111
Roosevelt Schools NY	Roosevelt tigh School	4731		Gir's Locker Room 028	13	13	0.0534	0.0220	4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	,760	0.69	0.29	0.41	,222	503	718
Roosevelt Schools MY	Roosevelth tigh School	474.		Giris Locker Room 028a	2	2	0.0534	0.0220	,mp т $^{\text {¢ }}$	LED Int. Diviver Lamps, (2) 4 Lamps	1,760	0.11	0.04	.06	188	77	111
Roosevelt Schools MY	Roosevelt tigh School	475		Basement	87	87	0.0534	0.0250	1x4, 2-Lamp T8	LED Standard Wrap, NLO, 1x4, Jack Chain Mount	750	4.65	2.18	2.47	3,484	1,631	1.853
Roosevelt Schools MY	Roosevelt High School	476		ement	${ }^{21}$	21	0130	0060	13w	LED Lamp, ALLine, LLo	750	0.27	. 13	0.15	205	95	110
Roosevelt Schools NY	Roosevelth tigh School	477	oof	Mechanical 2 -rooftop	4	4	0.0534	0.0250	1x4, -2-1amp T8	LED Standard Wrap, NLL, 1x4, Jack Chain Mount	750	0.21	0.10	0.11	160	75	85
Roosevell Schools NY	Roosevelt High School	478		Stie Lighting ExT	18	18	0.1800	0.0750	H 150w	LED Shoebox, 10,000 Lumens, Type IV W, PC, AM GRY	4,380	3.24	1.35	1.89	14,91	5,913	8,278
Roosevelt Schools NY	Roosevelt High Schol	479		Stie Lighing Ext	1	1	0.2900	1000	250w	LED Shoebox, 12,000 Lumens, Type IV W, PC, AM GRY	4,380	0.29	0.10	0.19	1,270	438	${ }_{832}$
Roosevelt Schools NY	Roosevelt High School	4801		New Layout	92	92			New Layout	No Retroft	8,760						
Roosevelt Schools NY	Roosevelt tigh School	4810		New Layout	29	29			New Layout	No Retroft	4,380						
Roosevelt Schools MY	Rosesvelt Midale School	3		office	1	1	0.0360	0.0090	CF PL 32 W	LED Retrofit an Kit, 6 nch, NLo	2.200	0.04	0.01	0.03	79	20	59
Roosevelt Schools MY	Roosevelt Midale School	23		office	1	1			Exit ign - Led	will Not be Retofoit	8,760						
Roosevelt Schools MY	Roosevelt Midide School	33		office	9	9	0.0710	0.0350	2-Lamp 40 Biax	LED Retrofit Panel Kit, 2x, MLO	1,760	0.64	0.32	0.32	1,125	554	570
Roosevelt Schools MY	Rosesevel Midale School	43		ofice	2	2	0.0360	0.0120	P 32 W	LED Retrofit an Kit. 8 nch, NLO	2.200	0.07	0.02	0.05	158	53	106
Roosevelt Schools NY	Roosevelt Midalle School	5		Conference Room	6	6	0.055	0.0220	1x4, 2-Lamp T8	LeD Int. Diviver Lamps, (2) 4 Lamps	1,000	0.33	0.13	0.20	330	132	198
Roosevelt Schools NY	Roosevelt Midide School	63		Conference Room	2	2	0.035	0.0130	A 1 -Lamp 40 Biax	LED Int. Diviver Lamp, (1) 40w BX EQ	1,000	0.07	0.03	0.05	71	26	45
Roosevelt Schools MY	Rossevelt Midale School	73		ofice	2	2	0.0550	0.0220	x4, 2 -Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2,000	0.11	0.04	0.07	220	88	${ }_{132}$
Roosevelt Schools NY	Rosesevet Midale School	83		office	1	1			Exit Sign - Leo	will Not be Retofoft	8,760						
Roosevelt Schools NY	Rosesevet Midide School	93		Storage	1	1	0.055	0.0220	2x4, --Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	750	0.06	0.02	0.03	41	17	25
Roosevelt Schools NY	Roosevelt Midide School	103		Batroom	1	1	0.0360	0.0120	FPL 32w	LED Retrofit Can Kit, 8 nch, MLO	1,760	0.04	0.01	0.02	${ }^{63}$	21	42
Roosevelt Schools NY	Rosesevet Midale School	113		Batroom	1	1	0.0320	0.0160	1x2, 2-Lamp T8	LED Int. Diviver Lamps, (2) 2 ${ }^{\text {L Lamps }}$	1,760	0.03	0.02	0.02	56	28	28
Roosevelt Schools MY	Roosevelt Midide School	123		office	2	2	0.0820	0.0330	2x4, -Lamp T8	LED Int. Diviver Lamps, (3) 4 Lamps	1,760	0.16	0.07	0.10	289	116	172
Roosevelt Schools NY	Roosevelt Midide School	13.3		office	2	2	0.0820	0.0330	2x, 3 --Lamp T8	LED Int. Diviver Lamps, (3) 4 Lamps	1,760	0.16	0.07	0.10	289	116	172
Roosevelt Schools MY	Rosevelt Midale School	143		office	2	2	0.0820	0.0330	2x4, --Lamp T8	LED Int. Diviver Lamps, (3) 4 Lamps	1,760	0.16	0.07	0.10	289	116	172
Roosevelt Schools NY	Roosevelt Midide School	153		classroom	12	12	0.055	0.0220	1x, 2-2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Roosevelt Midide School	163		classroom	3	3	0.0360	0.0120	CF PL 32 w	LED Retrofit an KKit, 8 nch, NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools NY	Roosevet Mididle School	173		Classoom	12	12	0.0550	0.0220	x4, 2-Lamp T8	LeD Int. Divier Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Roosevelt Midide School	183		classroom	3	3	0.0360	0.0120	CF PL 32 w	LED Retrofit an KKit, 8 nch, NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools NY	Roosevelt Mididle School	193		Classoom	12	12	0.0550	0.0220	1x4, 2-Lamp T8	LeD Int. Diviver Lamps, (2) 4'Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rosevelt Midide School	203		Classroom	3	3	0.0360	0.0120	PL 32W	LED Retefofit an Kit, 8 nch, NLO	818	0.11	0.04	0.07	${ }^{88}$	29	59
Roosevelt Schools NY	Rosevelt Midde School	213		classoom	12	12	0.0550	0.0220	1x4, 2-Lamp 8	LEED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Florr	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Description	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \mathrm{kN} \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	Total kwn Proposed	$\begin{gathered} \text { Total kWh } \\ \text { Saved } \end{gathered}$
Roosevelt Schools NY	Roosevelt Midide School	223		Classoom	3	3	330	0.0120	CF PL 32 N	LED Retroftit an Kit, 8 nch, NLO	818	0.11	0.04	0.07	88	29	59
Rosevert Schools NY	Rosevelt Middle School	23.3		Classoom	12	12	0.0550	0.0220	x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rosesevel Mididle School	243		Classroom	3	3	0.0360	0120	CF PL	LED Retofot Can Kit, 8 nch, , NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools NY	Rosesevet Midide School	253		Classroom	12	12	0.0550	0.0220	1xa, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools Nr	Roosevelt Midide School	263		Classroom	3	3	0.0360	0.0120	FPL 32W	LED Retrofit an Kit, 8 Inch, , NLO	318	0.11	0.04	0.07	88	29	59
Roosevelt Schools MY	Rosesevel Midide School	273		Classroom	12	12	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rosesevet Midide School	283		Classioom	1	1	0.0360	0.0120	CF PL 32 W	LED Retrofit an K Kit, 8 nch, NL.	818	0.04	0.01	0.02	29	10	20
Roosevelt Schools NY	Rosesevel Midide School	293		office	2	2	0.0820	0.0330	2xa, 3-1amp T8	LeD Int. Driver Lamps, (3) 4 Lamps	1,760	0.16	0.07	0.10	289	116	172
Roosevelt Schools NY	Rosesevet Midale School	303		Storage	5	5	0.0550	201	1x4, 2-Lamp T8	LeD Int. Diviver Lamps, (2) 4 Lamps, XXL	2,200	0.28	0.11	0.17	605	242	363
Roosevelt Schools NY	Rosesevet Midide School	313		Batrrom, Men's	4	4	0.0360	0.0090	CF PL 32 W	LED Retofotit Can Kit, 6 nch, , NLO	1,760	0.14	0.04	0.11	253	${ }^{63}$	190
Roosevelt Schools NY	Roosevelt Midale School	323		Batrrom, Men's	4	4	0.0550	0.0220	1x4, 2-Lamp 8	LED Int. Divier Lamps, (2) 4 Lamps, XL	1,760	0.22	0.09	0.13	387	155	232
Roosevelt Schools NY	Rosevelt Midale School	333		Batrroom, Men's	1	1	0.0450	0.0220	1x3, 2-Lamp T8	LED nt. Diver Lamps, (2) ${ }^{\text {L Lamps, XL }}$	1,760	0.05	0.02	0.02	79	39	40
Roosevelt Schools MY	Roosevelt Midide School	343		jc	1	1	0.0550	0.0220	1x4, 2-Lamp ${ }^{\text {8 }}$	LED Int. Diviver Lamps, (2) 4 Lamps	750	0.06	0.02	0.03	41	17	25
Roosevelt Schools NY	Roosevelt Midale School	353		Batrroom, Women's	4	4	0.0360	0.0090	CF PL 32 W	LED Retrofit Can Kit, 6 nch, NLO	1,760	0.14	0.04	0.11	253	63	190
Roosevelt Schools Nr	Rosesevel Midale School	$36 / 3$		Bathroom, Women's	4	4	0.055	. 0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XL	1,760	0.22	0.09	0.13	387	155	232
Roosevelt Schools NY	Roosevelt Midide School	373		Batrroom, Women's	1	1	0.0450	0.0220	$1 \times 3,2$-Lamp 7	LED Int. Diviver Lamps, (2) $3^{\text {L Lamps, XL }}$	1,760	0.05	0.02	0.02	79	39	40
Roosevelt Schools NY	Roosevelt Midide School	383		classroom	12	12	0.0550	0.0220	1x4, 2-Lamp T8	LeD Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Rosesevel Schools NY	Rosevelt Middle School	393		lassroom	1	1	.0360	0.0120	FPL 32w	LED Retofot Can Kit, 8 nch, , NLO	318	0.04	0.01	0.02	29	10	20
Roosevelt Schools NY	Roosevelt Midide School	403		Batroom	1	1	0.0360	0.0090	CFFL P22w	LED Retroftit an Kit, 6 nch, NLO	1,760	04	0.01	0.03	${ }^{63}$	16	48
Roosevelt Schools NY	Roosevelt Midide School	413		Batroom	1	1	0.0320	0.0160	$1 \times 2,2$-lamp 78	LED int. Diviver Lamps, (2) 2 Lamps	1,760	0.03	0.02	0.02	56	28	28
Roosevelt Schools NY	Rosevelt Middle School	423		closet	1	1	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Rosesevet Midale School	433		Classroom	12	12	0.055	0.0220	1xa, 2-Lamp 8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Roosevelt Midide School	443		Classroom	3	3	0.0360	0.0120	CF PL 32 W	LED Retrofit an Kit, 8 Inch, , NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools NY	Rosevelt Midale School	453		Classroom	12	12	0.0550	0.0220	1x4, 2-Lamp T8	LED nt. Diver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevell Schools NY	Rossevelt Midde School	463		Classroom	3	3	0.0360	0.0120	CF PL 32 W	LED Retorfit an Kit, 8 nch, , NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools NY	Roosevelt Midide School	473		Breakroom	8	8	0.0710	0.0350	2-Lamp 40 Biax	LED Retorfit Panel Kit, 2x, NLL	2.000	0.57	0.28	0.29	1,136	560	576
Roosevelt Schools NY	Rosevelt Middle School	483		Breakoom	5	5	0.0360	0.0090	CF PL 32w	LED Retofoft Can Kit, 6 nch, , NLO	2.000	0.18	0.05	0.14	360	90	270
Roosevelt Schools NY	Rossevelt Midide School	493		Sreakroom Task Lighting	5	5	0.0280	0.0110	1x4, 1-1.amp 78	LED Int. Diviver Lamp, (1) 4 Lamp	2,000	. 14	0.06	0.09	280	110	170
Roosevelt Schools NY	Roosevelt Midide School	503		Batroom	1	1	0.0360	0.0090	CF PL 32 W	LED Retroft Can Kit, 6 nch, NLO	1,760	0.04	0.01	0.03	63	16	48
Roosevelt Schools NY	Rosevelt Midale School	513		Batroom	1	1	0.0320	0.0160	1x2, 2-Lamp T8	LED lnt. Diver Lamps, (2) ${ }^{2}$ Lamps	1,760	0.03	0.02	0.02	56	28	28
Roosevelt Schools NY	Rosevelt Midde School	523		office	2	2	0.0820	0.0330	2xt, 3-2amp ${ }^{\text {P }}$	LED Int. Diver Lamps, (3) 4 Lamps	1,760	0.16	0.07	0.10	289	116	172
Roosevelt Schools NY	Roosevelt Midide School	533		Electrical Rm	2	2	0.0550	0.0220	1x4, 2-1amp T8	LeD Int. Diviver Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	${ }^{66}$	26	40
Roosevert Schools MY	Rosevert Midale School	543		Classoom	12	12	0.0550	0.0220	1x4, -2-Lamp T8	LED Int. Diver Lamps, (2) 4'L Lams, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rosevelt Midale School	553		classoom	2	2	0.0360	0.0120	CF PL 32W	LED Retrofit an Kit, 8 nch, , NLO	818	0.07	0.02	0.05	59	20	39

Roosevelt UFSD, NY
Exhibit D-5-1
ECM 1- LED Lighting and Lighting Controls Upgrade
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { aty } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Oty } \end{gathered}$	Existing kw	Proposed kw	Existing Description	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \text { kW } \end{gathered}$		Total kWn Existing	Total kWh Propose	$\begin{gathered} \text { Total kWh } \\ \text { Saved } \end{gathered}$
Roosevelt Schools Nr	Roosevelt Mididle School	563		Classroom	12	12	. 550	0220	1x4, 2-Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps, xxL	818	0.66	0.26	0.40	540	216	324
Rosevelt Schools NY	Rosevelt Middle School	573		Classroom	2	2	0.0360	0.0120	CFPL 32w	LED Retroftican Kit, 8 hnch, NLO	818	0.07	0.02	0.05	59	20	39
Roosevelt Schools NY	Roosevelt Midide School	583		Storage	2	2	0.0550	0.0220	1x, 2--2amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	66	26	40
Roseselt Schools Nr	Roseveret Middle School	593		Classroom	12	12	550	0.0220	1x4, 2-Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Roosevelt Midide School	603		classroom	2	2	0.0360	0.0120	CFPL 32w	LED Retrofit Can Kit, 8 nch, MLO	818	0.07	0.02	0.05	59	20	39
Roosevelt Schools NY	Roosevelt Midide School	613		classroom	12	12	0.0550	0.0220	1x, 2--Amp T8	LEED Int. Diviver Lamps, (2) 4 Lamps, xxL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Roseveret Middle School	623		Classroom	3	3	3360	.0120	PL 32w	LED Retrofit Can Kit, 8 nch, NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools NY	Roosevelt Mididle School	633		Prep Room	3	3	0.0820	0.0330	2x, -3-amp T8	LED Int. Diviver Lamps, (3) 4'Lamps	600	0.25	0.10	0.15	148	59	88
Roosevelt Schools NY	Roosevelt Midide School	643		tr Rm	2	2	0.0550	0.0220	1xt, 2-2amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	66	26	40
Roosevelt Schools NY	Rosevelt Midde School	653		Classroom	12	12	0.0550	0220	X4, 2-L-Lamp 78	LEED Int. Diver Lamps, (2) 4 Lamps, xxL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Roseveret Mididle School	663		Classroom	3	3	0.0360	0.0120	FPL 32W	LED Retrofit Can Kit, 8 nch, NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools NY	Roosevelt Midide School	673		classroom	12	12	0.0550	0.0220	1xt, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps, xxL	818	0.66	0.26	0.40	540	216	324
Roseselt Schools NY	Rosesvet Mididle School	683		Classroom	3	3	0.0360	0.0120	PL 32w	LED Retrofit an Kit, 8 nch, NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools NY	Rosevelt Middle School	693		classroom	12	12	0.0550	0.0220	1x4, 2-Lamp T8	LEED int. Diver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Roosevelt Midide School	703		classroom	2	2	0.0360	0.0120	CF PL 32 w	LED Retrofit Can Kit, 8 nch, NLO	818	0.07	0.02	0.05	59	20	39
Roseselt Schools Nr	Rosesvel Mididle School	713		Classroom	12	12	0.0550	0220	X4, 2-L-Lamp 78	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rosevelt Middle School	723		Classroom	2	2	0.0360	0.0120	CFPL 32 W	LED Retrofit Can Kit, 8 nch, NLO	818	0.07	0.02	0.05	59	20	39
Roosevelt Schools NY	Rosevelt Middle School	73.3		Electrical Rm	2	2	0.0550	0.0220	1x4, 2--Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	${ }_{66}$	26	40
Roosevelt Schools NY	Rosevelt Middle School	743		Classroom	12	12	0.0550	0.0220	1x4, 2--2amp T8	LEED Int. Diver Lamps, (2) 4 Lemps, XxL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Roseveret Mididle School	753		Classroom	2	2	0.0360	0.0120	CF PL 32W	LED Retrofit Can Kit, 8 nch, NLO	818	0.07	0.02	0.05	59	20	39
Roosevelt Schools NY	Rosevelt Mididle School	763		Classroom	8	8	0.0550	0.0220	1x4, 2-2amp T8	LED int. Diver Lamps, (2) 4 Lamps, XXL	818	0.44	0.18	0.26	360	144	216
Roosevelt Schools NY	Rosevelt Middle School	773		classroom	1	1	0.0360	0.0120	F PL 32w	LED Retrofit an Kit, 8 nch, NLO	818	0.04	0.01	0.02	29	10	20
Roosevelt Schools NY	Roseveret Middle School	783		office	1	1	0.0820	0.0330	2x4, --Lamp T8	LED Int. Divier Lamps, (3) 4 Lamps	1,760	0.08	0.03	0.05	144	58	86
Roosevelt Schools NY	Rosevelt Middle School	793		office	1	1	0.0820	0.0330	2x4, 3-Lamp T8	LED Int. Diver Lamps, (3) 4 Lamps	1,760	0.08	0.03	0.05	${ }^{144}$	58	86
Roosevelt Schools NY	Rosevelt Midde School	803		Storage		1	0.0820	0.0330	2x, --Lamp T8	LED Int. Divier Lamps, (3) 4 Lamps	1,760	0.08	0.03	0.05	144	58	${ }^{86}$
Roosevelt Schools NY	Roseveret Middle School	${ }_{81} 13$		Halway	25	25	0.0710	0.0350	2-Lamp 40 Biax	LED Retofot Panel Ki, 2x, NLO	3,000	1.78	0.88	0.90	5,325	2,625	2,700
Roosevelt Schools NY	Rosevelt Middle School	823		Halmay	35	35	0.0360	0.0120	CF PL 32 W	LED Retrofit Can Kit, 8 nch, NLO	3,000	1.26	0.42	0.84	3,780	1,260	2,520
Roosevelt Schools NY	Rosevelt Middle School	833		Halway	7	7			Ext Sign - Led	will Not be Retorfit	8,760						
Roosevelt Schools NY	Roseveret Middle School	${ }^{84}{ }^{2}$		Open office	1	1	0.0820	0.0330	2x4, --1amp T8	LED Int. Driver Lamps, (3) 4 Lamps	2,000	0.08	0.03	0.05	164	${ }^{66}$	98
Roosevelt Schools NY	Rosesevel Mididle School	${ }^{85} 2$		Open Office	1	1			Ext Sign - Led	will Not be Retofoft	8,760				-	-	
Roosevelt Schools NY	Rosevelt Middle School	882		Open Office	8	8	0.0710	0.0350	Lamp 40 Biax	LED Retofot Panel Kt , 2x2, NLO	1,760	0.57	0.28	0.29	1,000	493	507
Roosevelt Schools NY	Rosevelt Middle School	${ }^{87} 2$		Open office	1	1			Exit ign - Led	will Not be Retofot	8,760						
Roosevelt Schools NY	Rosevelt Middle School	88.2		office	2	2	0.0820	0.0330	2x, 3 -Lamp T8	LED Int. Diver Lamps, (3) 4 Lamps	1,760	0.16	0.07	0.10	289	116	172
Roosevelt Schools NY	Rosevelt Middle School	${ }_{89} 2$		Office	2	2	0.0820	0.0330	2x, 3 --Lamp T8	LEED Int. Diver Lamps, (3) 4 Lamps	1,760	0.16	0.07	0.10	289	116	172

Roosevelt UFSD, NY
Exhibit D-5-1
ECM 1 - LED Lighting and Lighting Controls Upgrade
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { afy } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { aty } \end{gathered}$	Existing kw	Proposed kw	Existing Dessripition	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ k w \end{gathered}$	$\begin{gathered} \text { Total Post } \\ k w \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \\ \hline \end{gathered}$	Total kWn Existing	Total kWh Proposed	$\begin{gathered} \text { Total kWh } \\ \text { Saved } \end{gathered}$
Roosevelt Schools NY	Rossevelt Midale School	902		Conference Rm	6	6	0.0550	0.0220	1x4, -2-amp T8	LeD Int. Diviver Lamps, (2) 4 Lamps	800	0.33	0.13	0.20	264	106	158
Sosevelt Schools NY	Roosevelt Midale School	912		ence Rm	5	5	0355	0.030	Lamp 40 Biax	LED Int. Diviver Lamp, (1) 40w BX EQ	800	0.18	0.07	0.11	142	52	90
Sosevelt Schools NY	Rosesevel Midide School	922		Office	4	4	0.0820	0.0330	Imp 78	LED Int. Diver Lamps, (3) 4 Lamps	1,760	${ }^{3}$	3	0.20	577	232	345
Roosevelt Schools Mr	Roosevelt Midale School	932		Storage	4	4	0.0820	. 0330	4, 3-Lamp T8	LED Int. Diviver Lamps, (3) 4 Lamps	600	. 33	0.13	0.20	197	79	118
Rosesevel Schools NY	Roosevelt Midale School	942		Batrroom	1	1	0.0360	0.0090	${ }^{\text {P } 32 \mathrm{w}}$	LED Retrofit an Kit, 6 lech, NLO	704	0.04	0.01	0.03	25	6	19
Roosevelt Schools Mr	Rossevelt Midale School	$95 / 2$		Batro	1	1	0.0320	\%	$1 \times 2,2$-lamp 8	LED Int. Diviver Lamps, (2) 2 Lamps	704	0.03	0.02	0.02	23	11	11
Roosevelt Schools NY	Roosevelt Midale School	962		Storage	1	1	.0710	0.0350	-amp 40 Biax	LED Retorfit Panel Kit, 2x, , NLO	600	0.07	0.04	0.04	${ }_{4}$	21	22
Roosevelt Schools Nr	Roosevelt Midale School	972		classroom	12	12	0.0550	0.022	x4, 2-Lamp 78	LED int. Diviver Lamps, (2) 4 Lamps, XXL	818	66	0.26	0.40	540	216	324
Roosevelt Schools Mr	Roosevelt Midale School	98.2		Classroom	3	3	560	0120	рL3	LED Retroft Can Kit, 8 nch, NLO	818	0.11	0.04	0.07	${ }^{88}$	29	59
Roosevelt Schools NY	Rossevel Midide School	992		Classroom	12	12	0.055	0.0220	1x4, 2-Lamp 88	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rosesevel Mididle School	1002		classroom	3	3	0360	0.0120	F PL 32 w	LED Retrofit Can Kit. 8 nch, NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools Mr	Roosevelt Midale School	1012		Classroom	12	12	0.0550	0.0220	4, 2 -Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XxL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rosevevel Midale School	1022		classroom	3	3	0.0360	0.0120	CFPL 32w	LED Retrofit an Kit, 8 nch, NLO	818	0.11	0.04	0.07	${ }_{88}$	29	59
Roosevelt Schools NY	Rosesevel Mididle School	1032		classroom	12	12	0.0550	0.0220	1x4, --Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools Mr	Rossevelt Midale School	1042		Classoom	3	3	0.0360	0.0120	${ }_{\text {PL }} 32 \mathrm{~W}$	LED Retrofit an Kit, 8 nch, , NLO	818	0.11	0.04	0.07	${ }_{8}$	29	59
Roosevelt Schools NY	Rosevevet Midale School	1052		classroom	12	12	0.0550	0.0220	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools Nr	Rossevelt Midale School	1062		classroom	3	3	0.0360	0.0120	PL32w	LED Retrofit an Kit. 8 nch, , NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools Mr	Rossevelt Midale School	$107 / 2$		Classiom	12	12	0.0550	0.022	x4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	. 26	0.40	540	216	324
Roosevelt Schools NY	Rosevevet Midale School	1082		classroom	3	3	0.0360	0.0120	CF PL 32 w	LED Retrofit an Kit, 8 nch, NLO	818	0.11	0.04	0.07	${ }_{88}$	29	59
Roosevelt Schools Mr	Rossevelt Midale School	1092		classroom	12	12	0.0550	0.022	X4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools Mr	Rosevelt Midalle School	1102		classioom	1	1	0.0360	0.0120	PL 32w	LED Retrofit Can Kit, 8 nch, NLO	818	0.04	0.01	0.02	29	10	20
Roosevelt Schools NY	Rosevelt Midalle School	1112		Office	2	2	0.0820	0.030	2x4, 3-Lamp T8	LED Int. Diviver Lamps, (3) 4 Lamps	1,760	0.16	0.07	0.10	289	116	172
Roosevelt Schools NY	Roosevel Midide School	1122		Storage	5	5	0.0550	0.0220	x4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps, XXL	2.500	0.28	0.11	0.17	688	275	413
Roosevelt Schools NY	Rosevelt Midalle School	1132		Bathrom, Mer's	4	4	0.0360	0.0090	PL 32 w	LED Retrofit Can Kit, 6 nch, NLO	1,760	0.14	0.04	0.11	253	63	190
Roosevelt Schools NY	Rosesvelt Midale School	1142		Bathrom, Mer's	4	4	0.0550	0.0220	1x4, -2-amp T8	LED lnt. Diviver Lamps, (2) 4 Lamps, XL	1,760	0.22	0.09	0.13	387	155	232
Roosevelt Schools NY	Roseseet Mididle School	1152		Batrrom, Mer's	1	1	0.0450	0.0220	1x, 2 -2-amp T8	LED int. Diviver Lamps, (2) $3^{\text {L Lamps, XL }}$	1,760	0.05	0.02	0.02	79	39	40
Roosevelt Schools NY	Roosevet Midale School	1162		Jc	1	1	0.0550	0.0220	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	750	0.06	0.02	0.03	41	17	25
Roosevelt Schools NY	Rosevevel Midale School	1172		Batrroom, Women's	4	4	0.0360	0.0090	CF PL 32 w	LED Retroft Can Kit, 6 nch, N. L O	1,760	0.14	0.04	0.11	253	63	190
Roosevelt Schools Mr	Roseseet Mididle School	1182		Batroom, Women's	4	4	0.0550	0.0220	1x4, --2amp T8	LED int. Diviver Lamps, (2) 4 Lamps, XL	1,760	0.22	0.09	0.13	387	155	232
Roosevelt Schools NY	Rossevelt Midale School	1192		Batrroom, Women's	1	1	0.0450	0.022	1x3, 2-2amp T8	LED Int. Diviver Lamps, (2) $3^{\text {L Lamps, } \mathrm{XL}}$	1,760	0.05	0.02	0.02	79	39	40
Roosevelt Schools NY	Rosevevel Midale School	1202		classroom	12	12	0.0550	0.0220	1x, 2-2-Lamp T8	LED lnt. Diver Lamps, (2) 4 Lamps, XxL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Roseveret Midale School	1212		classroom	1	1	0.0360	0.0120	-32w	LED Retrofit Can Kit, 8 nch, NLO	818	0.04	0.01	0.02	29	10	20
Roosevelt Schools NY	Roseseet Midalle School	1222		Batroom	1		0.0360	0.009	CF PL 32 w	LED Retrofot Can Kiti, 6 nch, NLO	1,760	0.04	0.01	0.03	${ }^{63}$	16	48
Roosevelt Schools NY	Roosevet Midide School	${ }_{123}$		Batroom			0.0320	0.0160	1x2, 2-Lamp T8	LED Int. Diviver Lamps, (2) 2 Lamps	1,760	0.03	0.02	0.02	56	28	28

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \mathrm{kN} \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	Total kwn Proposed	Total kWh
Roosevelt Schools NY	Roosevelt Midide School	${ }_{124}$		Storage	1	1	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Roosevelt Midide School	${ }^{125} 2$		Classroom	12	12	0.0550	. 0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools Nr	Rosesevel Midale School	1262		Classioom	3	3	0.0360	0.0120	CFPL 3	LED Retofotit an Kit, 8 Inch, , NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools NY	Rosesevet Midide School	1272		Classioom	12	12	0.055	0.0220	1xa, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Roosevelt Midide School	1282		Classroom	3	3	0.0360	0.0120	CF PL 32 W	LED Retrofit an Kit, 8 nch, , NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools MY	Rosesevel Midide School	1292		Breakroom	8	8	0.0710	802	2-Lamp 40 B	LED Int. Divier Lamp, (2) 40w BX EQ	2,000	0.57	0.21	0.36	,136	416	720
Roosevelt Schools NY	Rosesevet Midide School	1302		Breakroom	5	5	0.0360	0.0090	CF PL 32 W	LED Retofotit Can Kit, 6 nch, , NLO	2,000	0.18	0.05	0.14	360	90	270
Roosevelt Schools MY	Roosevelt Midide School	1312		Breakroom Task Liging	5	5	0.0280	0.0110	1x4, 1-1/amp 8	LED Int. Diviver Lamp, (1) 4 Lamp	2.000	0.14	0.06	. 09	280	110	170
Roosevelt Schools NY	Rosesevet Midale School	1322		Batroom	1	1	0.0360	0.0090	CF PL 32W	Led Retofotit Can Kit, 6 nch, , NLO	1,760	0.04	0.01	0.03	63	16	48
Roosevelt Schools NY	Rosesevet Midide School	1332		Batrroom	1	1	${ }^{0.0320}$	0.0160	1x2, 2-Lamp 8	LED Int. Diviver Lamps, (2) 2 Lamps	1,760	0.03	0.02	0.02	56	28	28
Roosevelt Schools MY	Roosevelt Midale School	1342		office	2	2	0.0820	0.0330	2xt, 3-1amp 8	LED Int. Divier Lamps, (3) 4'Lamps	2.000	0.16	0.07	. 10	328	132	196
Roosevelt Schools NY	Rossevel Mididle School	${ }_{135} 2$		Electical Rm	2	2	0.0550	0.0220	1x4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps	800	0.11	0.04	0.07	${ }_{6}$	26	40
Roosevelt Schools NY	Roosevelt Midide School	1362		classroom	12	12	0.0550	0.0220	1x4, 2-Lamp $\mathbf{T 8}^{\text {a }}$	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools MY	Roosevelt Midale School	1372		classroom	2	2	0.0360	0.0120	CF PL 32 W	LED Retrofit Can Kit. 8 nch, NLO	818	0.07	0.02	0.05	59	20	39
Roosevelt Schools MY	Roosevelt Midide School	1382		Classroom	12	12	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Roosevelt Midide School	${ }_{139} 2$		classroom	2	2	0.0360	0.0120	CFPL P22w	LED Retroftit an Kit, 8 nch, N.	818	0.07	0.02	0.05	59	20	39
Roosevelt Schools NY	Rossevelt Midde School	1402		Storage	1	1	0.0550	0.0220	1xa, 2-1amp 8	LED int. Divier Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools MY	Roosevelt Midide School	1412		Classroom	12	12	0.0550	. 02220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4'Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Roosevelt Midide School	1422		classroom	2	2	0.0360	0.0120	CFPL P22w	LED Retroftit Can Kit, 8 Inch, NLO	818	0.07	0.02	0.05	59	20	39
Roosevelt Schools NY	Roosevelt Midide School	1432		Classroom	12	12	0.055	0.0220	1x4, 2-Lamp $\mathbf{T}^{\text {a }}$	LED Int. Driver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rosevelt Middle School	1442		Classoom	3	3	0.0360	0.0120	CF PL 32w	LED Retofofi Can Kit, 8 nch, , NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools NY	Rosesevet Midide School	1452		Storage	2	2	0.0820	0.0330	2xa, 3-1amp 8	LED Int. Driver Lamps, (3) 4 Lamps	600	0.16	0.07	0.10	${ }^{98}$	40	59
Roosevelt Schools MY	Roosevelt Midide School	1462		Storage	2	2	0.0710	0.0350	2-Lamp 40 Biax	LED Retorfit Panel Kit, 2x, NLL	600	0.14	0.07	0.07	85	42	43
Roosevelt Schools NY	Rosesevel Midall School	1472		tr Rm	2	2	0.0550	0.0220	1x4, 2-Lamp T8	LED nt. Diver Lamps, (2) 4' Lamps	600	0.11	0.04	0.07	66	26	40
Roosevelt Schools MY	Roosevelt Midide School	1482		classroom	12	12	0.0550	0.0220		LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools MY	Roosevelt Midide School	1492		classroom	3	3	0.0360	0.0120	CFPL 32 W	LED Retrofit Can Kit. 8 nch, NLO	818	0.11	0.04	0.07	${ }^{88}$	29	59
Roosevelt Schools NY	Rosevelt Midale School	$150 / 2$		Classoom	12	12	0.0550	0.0220	1x4, 2-Lamp T8	LED not. Diver Lamps, (2) 4'Lams, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Roosevelt Midide School	1512		classroom	2	2	0.0360	0.0120	CFPL P22w	LED Retroftit Can Kit, 8 Inch, NLO	818	0.07	0.02	0.05	59	20	39
Roosevelt Schools MY	Roosevelt Midide School	$152{ }^{2}$		Storage	1	1	0.0550	0.0220	1x4, 2-Lamp 8	LED Int. Divier Lamps, (2) 4'Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Roosevel Midide School	1532		Classroom	12	12	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Divier Lamps, (2) 4'Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rossevelt Midde School	154.2		Classroom	2	2	0.0360	0.0120	CF PL 32 W	LED Retofot Can Kit, 8 nch, , NLO	818	0.07	0.02	0.05	59	20	39
Roosevelt Schools NY	Roosevelt Midide School	1552		Classroom	12	12	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Driver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Roseselt Midide School	$156 / 2$		Classroom	2	2	0.0360	0.0120	CF PL 32w	LED Retofofi Can Kit, 8 nch, , NLO	818	0.07	0.02	0.05	59	20	39
Roosevelt Schools MY	Rosevelt Middle School	$157{ }^{1}$		Electrical Room	2	2	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	66	26	40

Roosevelt UFSD, NY
Exhibit D-5-1
ECM 1- LED Lighting and Lighting Controls Upgrade
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { afy } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { aty } \end{gathered}$	Existing kw	Proposed kw	Existing Dessription	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ k w \end{gathered}$	$\begin{gathered} \text { Total Post } \\ k w \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \\ \hline \end{gathered}$	Total KWh Existing	Total kWh Proposed	$\begin{gathered} \text { Total kWh } \\ \text { Saved } \end{gathered}$
Roosevelt Schools NY	Rossevelt Midale School	1582		classroom	12	12	0.0550	0.0220	1x, 2-2-amp T8	LEED int. Diviver Lamps, (2) 4 Lamps, XxL	818	0.66	0.26	0.40	540	216	324
Soseselt Schools NY	Roosevelt Midale School	1592		sssroom	2	2	0.0360	0120	CF PL 32W	LED Retrofit Can Kit, 8 hnch, NLO	818	0.07	. 02	0.05	59	20	39
Sosevelt Schools NY	Rossevelt Midale School	1602		ssroon	8	8	0.0550	0.022	Lamp	LED int. Divier Lamps, (2) 4 Lamps, XXL	818	0.44	8	0.26	360	144	216
Roosevelt Schools NY	Rossevelt Midale School	1612		classroom	1	1	0.0360	0.0120	CF PL 32 w	LED Retrofit Can Kit, 8 hnch, NLO	818	0.04	0.01	0.02	29	10	20
Rosesevel Schools NY	Roosevelt Midale School	1622		fife	1	1	0.0820	0.0330	2x4, 3 -Lamp T8	LED int. Divier Lamps, (3) 4 Lamps	760	. 08	0.03	0.05	${ }^{144}$	58	${ }_{8} 8$
Roosevelt Schools NY	Roosevel Midide School	1632		Offie	1	1	0.0820	0.0330	2x, 3 --amp T8	LED Int. Divier Lamps, (3) 4 Lamps	1,760	0.08	0.03	0.05	${ }^{144}$	58	${ }^{86}$
Roosevelt Schools NY	Rossevelt Midalle School	1642		Storage	2	2	0.0820	0.0330	2x4, 3 -Lamp T8	LED int. Diver Lamps, (3) 4 Lamps	600	0.16	0.07	0.10	98	40	59
Roosevelt Schools Nr	Roosevelt Midale School	1652		Halway	26	26	0.0710	0.0350	Lamp 40 Biax	LED Retrofit Panel Kt , 2x, nLo	000	1.85	. 91	0.94	5.538	2.730	2,808
Roosevelt Schools Mr	Roosevelt Midale School	1662		Halluy	37	37	0.0360	0120	CF PL 32w	LED Retrofit Can Kit, 8 nch, NLO	3,000	1.33	0.44	0.89	3,996	1,332	2.664
Roosevelt Schools NY	Roosevet Midale School	$167 / 2$		Halway	6	6			Extit Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools NY	Rosesevel Mididle School	1682		Libray	4	4	0.0550	0.0220	x4, 2-Lamp T8	LED Int. Diviver Lamps, (2)44 Lamps, xL, H1	3,750	22	0.09	0.13	825	330	495
Roosevelt Schools Mr	Roosevelt Midale School	1692		Libray	10	10	0.2130	0.0780	np 4	LEED Int. diver Lamp, (6) 40w BX EQ, \times ¢	2,200	2.13	0.78	1.35	4,686	1,716	2,970
Roosevelt Schools NY	Rosevevel Midale School	1702		Libary	30	30	0.0460	0.0315	CF PL 42w	LED Cyinder, -3000 Lumen, Pendant Mount, H1	2,200	1.38	0.95	0.44	3,036	2,079	957
Roosevelt Schools NY	Rosesevel Mididle School	1712		Libary	7	7	0.0620	0.0250	$1 \times 4 \times$, 1-Lamp T5H	LED Int. Diviver Lamp, (1) 4 45 Ho Lamp, H1	2.200	0.43	0.18	0.26	955	385	570
Roosevelt Schools Mr	Rossevelt Midale School	1722		Librar	4	4	0.0170	. 0080	<2, 1-L-Lap T8	LED Int. Diver Lamp, (1) 2 Lamp	2,200	. 07	0.03	0.04	150	70	79
Roosevelt Schools NY	Rosevevel Midale School	1732		Libary	2	2			Exit Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools Nr	Rossevelt Midale School	1742		fice	4	4	0.0710	0.0350	Lamp 40 Biax	LED Retrofit Panel Kit, 2x, nLo	1,760	0.28	0.14	0.14	500	246	253
Roosevelt Schools Mr	Rossevelt Midale School	1752		office	10	10	0.0710	. 0350	Lamp 40 Biax	LED Retrofit Panel Kt , 2x2, nLo	1,760	0.71	0.35	. 36	1,250	616	634
Roosevelt Schools NY	Rosevevel Midale School	1762		Office	2	2	0.0820	0.0330	2x4, 3-2mp T8	LEE int Diviver Lamps, (3) 4 Lamps	1,760	0.16	0.07	0.10	289	116	172
Roosevelt Schools Mr	Rossevelt Midale School	1772		Conference Rm	4	4	0.0550	0.0220	4, 2-Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	1,760	22	0.09	0.13	${ }_{387}$	155	232
Roosevelt Schools NY	Rosevelt Midalle School	1782		Confere	5	5	0.0355	0.030	--Lamp 40 Biax	LED Int. Diviver Lamp, (1) 40 w BX EQ	1,760	0.18	0.07	0.11	312	114	198
Roosevelt Schools NY	Roosevelt Midale School	1792		Lab	16	16	0.0440	0.0260	A 1-Lamp 40 Biax	LED Int. Diviver Lamp, (2) 40w BX EQ	818	0.70	0.42	0.29	576	340	236
Roosevelt Schools NY	Roosevelt Midide School	1802		Office	4	4	0.0710	0.0260	Lamp 40 Biax	LED Int. Diviver Lamp, (2) 40w BX EQ	,760	0.28	0.10	0.18	500	183	317
Roosevelt Schools NY	Rosevelt Midalle School	1812		Storage	3	3	0.0820	0.0330	2x, 3, -Lamp T8	LEED int. Diver Lamps, (3) 4 Lamps	600	0.25	0.10	0.15	48	59	88
Roosevelt Schools NY	Rosevevel Midale School	1822		classroom	9	9	0.0820	0.0330	$2 \times 4,3$-Lamp T8	LEE int Diviver Lamps, (3) 4 Lamps	818	0.74	0.30	0.44	604	243	361
Roosevelt Schools NY	Rosesevel Mididle School	1832		Classroom	4	4	0.0355	0.033	1-Lamp 40 Biax	LED Int. Diviver Lamp, (1) 40 w BX EQ	818	0.14	0.05	0.09	116	43	74
Roosevelt Schools NY	Rosevelt Midalle School	1842		Classoom	7	7	0.0360	0.0090	PL 32w	LED Retrofit Can Kit, 6 nch, NLO	818	0.25	0.06	0.19	206	52	155
Roosevelt Schools NY	Roosevet Midale School	1852		Classrom Range Hood	1	1	0.0400	0.0060	Hc 40w	LED Lamp, ALLine, LLo	818	0.04	0.01	0.03	33	5	28
Roosevelt Schools NY	Rosevevel Midale School	1882		Kithen	3	3	0.0820	0.0330	x4, 3-2amp 78	LED int. Diviver Lamps, (3) 4 Lamps	818	0.25	0.10	0.15	201	81	120
Roosevelt Schools NY	Rossevelt Midale School	1872		Kithen Rangehood	4	4	0.040	. 060	Inc 40w	LeD Lamp, ALLine, LLo	818	0.16	0.02	0.14	131	20	111
Roosevelt Schools NY	Rosevevel Midde School	1882		Kithenen Task Lighting	2	2	0.070	0.0080	122, --Lamp T8	LED int. Diver Lamp, (1) 2 L Lamp	818	0.03	0.02	0.02	28	13	15
Roosevelt Schools NY	Rossevelt Mididle School	1892		Kithenen TaskL Lighing	4	4	0.0280	0.01	x4, 1-1-amp T8	LED Int. Diver Lamp, (1) 4 Lamp	818	0.11	0.04	0.07	92	36	56
Roosevelt Schools NY	Roseseeth Midale School	1902		Classroom	7	7	0.0360	0.0090	FPL 32 w	LeD Retrofit Can Kiti, 6 Inch, MLO	818	0.25	0.06	0.19	206	52	155
Roosevelt Schools NY	Roosevet Midide School	1912		classroom	9	9	0.0820	0.0330	2xa, --Lamp T8	LED Int. Diviver Lamps, (3) 4 Lamps	818	0.74	0.30	0.44	604	243	361

Roosevelt UFSD, NY
Exhibit D-5-1
ECM 1 - LED Lighting and Lighting Controls Upgrade
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { aty } \\ \hline \end{gathered}$	$\underset{\substack{\text { Proposed } \\ \text { aty }}}{ }$	Existing kw	Proposed kw	Existing Description	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ k w \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { Total Post } \\ & \mathrm{kW} \end{aligned}\right.$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	Total kWh	Total kWh Saved
Roosevelt Schools NY	Rosesevel Midide School	1922		Classrom Range Hood	1	1	0.0400	0.0080	In 40 w	Led Lamp, A-Line, LLo	818	0.04	0.01	0.03	33	5	28
Roosevelt Schools NY	Roosevelt Midide School	1932		Classroom	3	3	0.082	0.0330	X4, 3-1-2mp T8	LED Int. Diviver Lamps, (3) 4 Lamps	818	0.25	0.10	. 15	201	81	120
Roosevelt Schools NY	Rosesevel Mididle School	1942		Classroom Range Hood	4	4	0.040	0.0060	Inc 40w	LED Lamp, ALLine, LLo	818	0.16	0.02	0.14	131	20	111
Roosevelt Schools NY	Rosesevet Midide School	1952		Classroom TaskL Light	4	4	0.0280	0.0110	1x4, 1-Lamp T8	LED Int. Diviver Lamp, (1) 4 Lamp	818	0.11	0.04	0.07	92	36	56
Roosevelt Schools Nr	Roosevelt Midide School	1962		Classroom Task Lighng	2	2	0.0170	0.0080	1x2, 1-1/amp T8	LED Int. Diviver Lamp, (1) 2^{2} Lamp	818	0.03	0.02	0.02	28	13	15
Roosevell Schools NY	Rosevelt Middle School	$197 / 2$		Store	2	2	0.0550	0.0220	2x4, 2-Lamp T8	LED nt. Divier Lamps, (2) 4'Lamps	600	0.11	0.04	0.07	${ }_{6}$	26	40
Roosevelt Schools NY	Rosesevet Midide School	1982		Electrical m	1	1	0.0550	0.0220	1xa, 2-Lamp 8	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Roosevelt Midide School	1992		Classroom	19	19	0.0820	0.0330	2xa, 3-1amp T8	LED Int. Divier Lamps, (3) 4'Lamps	818	. 56	0.63	0.93	1274	513	762
Roosevelt Schools NY	Rosevelt Middle School	2002		Classoom	2	2	0.0355	0.0130	A 1-Lamp 40 Biax	LED int. Diviver Lamp, (1) 40w BX EQ	818	0.07	0.03	0.05	58	${ }^{21}$	${ }^{37}$
Roosevelt Schools NY	Rosesevet Midide School	2012		Classioom	2	2			Extitign - Led	will Not be Retoroft	${ }_{8,760}$	-	-				
Roosevelt Schools NY	Roosevelt Midale School	2022		Classroom	1	1	0.0360	0.0090	CFPL 32 W	LED Retrofit Can Kit, 6 nch, NLO	818	0.04	0.01	0.03	29	7	22
Roosevelt Schools NY	Rosevelt Midale School	2032		Storage	2	2	0.0550	0.0220	2xt, 2-Lamp T8	LED nt. Divier Lamps, (2) 4 L Lamps	600	0.11	0.04	0.07	${ }_{6}$	26	40
Roosevelt Schools MY	Roosevelt Midide School	2042		Storage	1	1	0.0550	0.0220	1x4, 2-1amp ${ }^{\text {8 }}$	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Roosevelt Midale School	2052		classroom	12	12	0.0550	0.0220	2xa, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools MY	Rosesevel Midale School	2062		Classroom	19	19	0.0820	0.0330	$2 \times 4,3-\operatorname{lamp}$ T8	LED int. Driver Lamps, (3) 4 Lamps	818	1.56	0.63	0.93	1,274	513	762
Roosevelt Schools NY	Roosevelt Midide School	2072		classroom	1	1	0.0360	0.0090	CFFL P 32 W	LED Retroftit an Kit, 6 nch, NLO	818	0.04	0.01	0.03	29	7	22
Roosevelt Schools MY	Roosevelt Midide School	2082		classroom	2	2	0.035	0.0130	1-Lamp 40 Biax	LEED Int. Diver Lamp, (1) 40w BX EQ	818	0.07	0.03	0.05	58	21	37
Rosesevel Schools NY	Rosevelt Middle School	2092		Classroom	2	2			Exitign - LeD	will Not be Rerofft	8,760						
Roosevelt Schools MY	Roosevelt Midide School	2102		Telecom Rm	1	1	0.0550	0.0220	1x4, 2-Lamp ${ }^{\text {8 }}$	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Roosevelt Midide School	2112		Strorge	1	1	0.0550	0.0220	2xt, 2-Lamp 8	LED int. Driver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Rosevelt Middle School	2122		Classroom	24	24	0.0550	0.0220	1x4, 2-1amp 8	LED Int. Divier Lamps, (2) 4 Lamps, XXL	818	1.32	0.53	0.79	1.080	432	648
Roosevelt Schools NY	Rosesevet Midide School	2132		Classroom Task Lighting	3	3	0.0280	0.0110		LED Int. Diviver Lamp, (1) 4 Lamp	1.800	0.08	0.03	0.05	151	59	92
Roosevelt Schools NY	Roosevelt Midide School	2142		Storage	10	10	0.0360	0.0090	CF PL 32 W	LED Retrofit an Kit, 6 lech, , NLO	750	0.36	0.09	0.27	270	${ }^{68}$	203
Roosevelt Schools NY	Rosesevel Midall School	2152		Storge	2	2	0.0600	0.0100	Inc 60w	LED Lamp, ALine, NLO	750	0.12	0.02	0.10	90	15	75
Roosevelt Schools MY	Roosevelt Midide School	2162		Storage	2	2	0.0820	0.0330	2x4, 3-1amp ${ }^{\text {8 }}$	LED Int. Diviver Lamps, (3) 4 Lamps	600	0.16	0.07	0.10	98	40	59
Roosevelt Schools NY	Roosevelt Midide School	2172		Storage	2	2	0.0820	0.0330	2xa, 3-1amp 8	LED Int. Divier Lamps, (3) 4'Lamps	600	0.16	0.07	0.10	${ }_{98}$	40	59
Roosevelt Schools NY	Rosevelt Midale School	2182		Classoom	24	24	0.0550	0.0220	1x4, 2-Lamp T8	LED Mnt. Divier Lamps, (2) 4'Lamps, XXL	818	1.32	0.53	0.79	1.080	432	648
Roosevelt Schools MY	Roosevelt Midide School	2192		Classroom Task Lighting	3	3	0.0280	0.0110	$1 \times 4,1-\mathrm{Lamp}$ T8	LED Int. Driver Lamp, (1) 4 Lamp	1.800	0.08	0.03	0.05	151	59	92
Roosevelt Schools NY	Roosevelt Midide School	2202		Storage	2	2	0.0820	0.0330	2xa, 3-1amp 8	LED int. Driver Lamps, (3) 4 Lamps	600	0.16	0.07	0.10	98	40	59
Roosevelt Schools NY	Roseselt Midide School	2212		jo	1	1	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diver Lamps, (2) 4 L Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Rossevelt Midde School	2222		Restroom, Womens	5	5	0.0360	0.0090	CF PL 32 W	LED Retoroft Can Kit, 6 nch, , NLO	1,760	0.18	0.05	0.14	317	79	238
Roosevelt Schools NY	Rosesevel Midide School	2232		Restroom, Womens	4	4	0.0550	0.0220	1xa, 2-1amp 8	LED Int. Diviver Lamps, (2) 4 Lamps, XL	1,760	0.22	0.09	0.13	387	155	232
Roosevelt Schools NY	Roseselt Midide School	2242		Restroom, Womens	1	1	0.0450	0.0220	$1 \times 3,2$-Lamp ${ }^{\text {P }}$	LED Int. Diver Lamps, (2) $3^{\text {L Lamps, XL }}$	1,760	0.05	0.02	0.02	79	39	40
Roosevelt Schools NY	Rosevelt Midde School	22512		Restroom, Mens	5	5	0.0360	0.0090	CF PL 32 w	LED Retoroft Can Kit, 6 Inch, , NLO	1,760	0.18	0.05	0.14	317	79	238

Roosevelt UFSD, NY
Exhibit D-5-1
ECM 1 - LED Lighting and Lighting Controls Upgrade
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { Qty } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Dessription	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{aligned} & \text { Total Post } \\ & \text { kW } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total kWn Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools NY	Rossevelt Midale School	2262		Restrom, Mens	4	4	0.0550	0.0220	1x, 2-2-amp T8	LED lnt. Diviver Lamps, (2) 4 Lamps, XL	1,760	0.22	0.09	0.13	387	155	232
Sosevelt Schools NY	Roosevelt Midale School	2272		estroom, Mens	1	1	.0450	0.0220	3, 2 -Lamp T8	LED int. Diviver Lamps, (2) $3^{\text {L Lamps, } \mathrm{XL}}$	760	0.05	0.02	0.02	${ }^{79}$	39	40
Sosevelt Schools NY	Rossevelt Midale School	2282		Storage	1	1	0.0550	0.0220	-amp 9	LED Int. Diviver Lamps, (2) 4 ${ }^{\text {Lamps }}$	600	0.06	02	0.03	${ }^{33}$	13	20
Roosevelt Schools NY	Rossevelt Midale School	2292		Storage	1	1	0.0550	0.0220	2x4, 2-2amp T8	LEED int Diviver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Rosesevel Schools NY	Roosevelt Midale School	2302		Halway	10	10	0.0710	0.0350	2-Lamp 40 Biax	LED Retrofit Panel Kit, 2x, nLo	. 000	0.71	0.35	0.36	2,130	1,050	.080
Roosevelt Schools NY	Rossevelt Midale School	2312		Hallway	2	2			Exit Sign - Led	will Not be Retroft	8,760		.		-		
Roosevelt Schools NY	Rossevelt Midalle School	2322		Halway	6	6	0.0360	0.0090	cF PL 32w	LED Retrofit Can Kit. 6 hrch, NLO	3,000	0.22	0.05	0.16	648	162	486
Roosevelt Schools Nr	Roosevelt Midale School	2332		Hallay Case	7	7	0.0240	0110	1x3, 1-Lamp T8	LED Int. Diver Lamp, (1) $3^{\text {L Lamp }}$	3.000	17	0.08	0.09	${ }^{504}$	231	273
Sosevelt Schools NY	Roosevelt Midale School	2342		Halway Case	2	2	0.0280	0.0110	44, 1-L-Lmp T8	LED Int. Diver Lamp, (1) 4 Lamp	3,000	0.06	0.02	0.03	168	66	102
Roosevelt Schools NY	Rossevelt Midalle School	2352		Halway	12	12	0.0710	0.0350	-Lamp 40 Biax	LED Retroft Panel Kt , 2x2, NLO	3,000	0.85	0.42	0.43	2,556	1,260	1,296
Roosevelt Schools NY	Rosesevel Mididle School	2362		Halway	4	4			Exit Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools Mr	Roosevelt Midale School	2372		Hallway	4	4	0.0360	0.0090	PL 32w	LED Retrofit Can Kiti, inch, NLO	3,000	0.14	0.04	0.11	432	108	324
Roosevelt Schools NY	Rosevevel Midale School	2382		Halway Case	1	1	0.0240	0.0110	1x3, --Lamp T8	LED Int. Diver Lamp, (1) $3^{\text {L Lamp }}$	3,000	0.02	0.01	0.01	72	${ }_{3}$	39
Roosevelt Schools NY	Rosesevel Mididle School	2392		Hallay Case	1	1	0.0280	0.0110	1x4, --Lamp T8	LED Int. Diver Lamp, (1) 4 Lamp	3,000	0.03	0.01	0.02	${ }_{84}$	33	51
Roosevelt Schools NY	Roosevel Midide School	2402		Halway	18	18	0.0450	0.022	3, 2-L-Lamp 78	LED Int. Diver Lamps, (2) 3^{2} Lamps	3,000	0.81	0.40	0.41	2,430	1,188	242
Roosevelt Schools NY	Rosevevel Midale School	2412		Hallway	2	2			Exit Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools Nr	Rossevelt Midale School	2421		office	6	6	0.0710	0.0260	Lamp 40 Biax	LED int. Diviver Lamp, (2) 40w BX EQ	1,760	0.43	0.16	0.27	750	275	475
Roosevelt Schools Mr	Rossevelt Midale School	2431		office	1	1			Exit Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools NY	Rosevevel Midale School	2441		Conference	4	4	0.0550	0.0220	1x, 2--Lamp T8	LEE int Diviver Lamps, (2) 4 Lamps	1,760	0.22	0.09	0.13	387	155	232
Roosevelt Schools Mr	Rossevelt Midale School	2451		Conference	4	4	0.0355	0.030	1-Lamp 40 Biax	LED int. Diviver Lamp, (1) 40 w BX EQ	1,760	14	0.05	0.09	${ }^{250}$	92	158
Roosevelt Schools NY	Rosevelt Midalle School	2461		office	2	2	0.0820	0.0330	2x4, -Lamp T8	LED int. Diver Lamps, (3) 4 Lamps	1,760	0.16	0.07	0.10	289	116	172
Roosevelt Schools NY	Rossevelt Midalle School	2471		office	2	2	0.0710	0.0260	2--Lamp 40 Biax	LED Int. Diviver Lamp, (2) 40w BX EQ	1,760	0.14	0.05	0.09	250	92	158
Roosevelt Schools NY	Roosevelt Midide School	2481		Halway	6	6	0.0710	0.0350	Lamp 40 Biax	LED Retrofit Panel Kt , 2x2, nLo	3,000	0.43	0.21	0.22	1,278	630	648
Roosevelt Schools NY	Rosevelt Midalle School	2491		Hallway	2	2			Exit Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools NY	Rosevevel Midale School	2501		Kithen	1	1	0.0360	0.012	CF PL 32 w	LED Retrofit Can Kit. 8 hnch, NLO	2,000	0.04	0.01	0.02	72	24	48
Roosevelt Schools NY	Rosesevel Mididle School	2511		Kithen Task Lighing	4	4	0.0280	0.0110	1x4, --Lamp T8	LED Int. Diver Lamp, (1) 4 Lamp	2.000	0.11	0.04	0.07	224	88	${ }_{136}$
Roosevelt Schools NY	Roseseet Midalle School	2521		Restroom	1	1	0.0360	0.0090	FPL 32w	LeD Retrofit Can Kiti, 6 Inch, MLO	1,760	0.04	0.01	0.03	63	16	48
Roosevelt Schools NY	Rosevevel Midale School	2531		Restroom	1	1	0.0320	0.0160	122, 2-Lamp T8	LEED int Diviver Lamps, (2) $2^{\text {L Lamps }}$	1,760	0.03	0.02	0.02	56	28	28
Roosevelt Schools Mr	Rosesevel Mididle School	2541		Storage	2	2	0.0550	0.0220	x4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	66	26	40
Roosevelt Schools NY	Rossevel Midide School	2551		office	2	2	0.0820	. 0330	X4, 3-Lamp T8	LED Int. Diviver Lamps, (3) 4 Lamps	1,760	0.16	0.07	0.10	${ }^{289}$	116	172
Roosevelt Schools NY	Rosevevel Midale School	2561		office	2	2	0.0820	0.0330	2x4, -Lamp T8	LEE int Diviver Lamps, (3) 4 Lamps	1,760	0.16	0.07	0.10	289	116	172
Roosevelt Schools NY	Roseveret Midale School	2571		office	2	2	0.0550	0.0220	x4, 2-Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	1,760	0.11	0.04	0.07	${ }^{194}$	77	116
Roosevelt Schools NY	Rossevelt Midale School	2581		office	2	2	0.0550	. 0222	x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,760	11	0.04	0.07	194	77	116
Roosevelt Schools NY	Roosevet Midale School	2591		Bed Area			0.0710	0.0350	2-Lamp 40 Biax	LED Retroftit Panel $\mathrm{Kt,2} \mathrm{\times 2}$, NLO	1,760	0.28	0.14	0.14	500	246	253

Roosevelt UFSD, NY
Exhibit D-5-1
ECM 1 - LED Lighting and Lighting Controls Upgrade
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { Qty } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{aligned} & \text { Total Post } \\ & \text { kW } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total kWn Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools NY	Rossevelt Midale School	2601		Bed Area	3	3	0.0280	0.0110	1x4, --Lamp ${ }^{\text {d8 }}$	LED Int. Diver Lamp, (1) 4 Lamp	1,760	0.08	0.03	0.05	148	58	90
Roosevelt Schools NY	Roosevelt Midale School	2611		brage	2	2	.0550	. 0220	4, 2--Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	66	26	40
Sosevelt Schools NY	Rossevelt Midale School	2621		Stroon	1	1	0.0360	0.0090	CFPL 32W	LED Retrofit Can Kiti, 6 inch, NLO	1,760	04	0.01	0.03	${ }^{63}$	16	48
Roosevelt Schools NY	Rossevelt Midale School	2631		Restroom	1	1	0.0320	0.0160	122, 2-Lamp T8	LEED Int. Diver Lamps, (2) $2^{\text {L Lamps }}$	1,760	0.03	0.02	0.02	56	28	28
Rosesevel Schools NY	Roosevelt Midale School	2641		Storage	2	2	0.055	0.0220	X4, 2 -Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	${ }^{66}$	26	40
Roosevelt Schools NY	Rossevelt Midale School	2651		Classroom	12	12	0.0550	0.0220	-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rossevelt Midalle School	2661		classroom	3	3	0.0360	0.0120	F P P 32w	LED Retrofit Can Kit. 8 hnch, NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools Nr	Roosevelt Midale School	2671		classroom	12	12	0.550	0.0220	x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	66	0.26	0.40	${ }^{540}$	216	324
Roosevelt Schools Mr	Roosevelt Midale School	2681		Classroom	3	3	380	.0120	PL 32 W	LED Retrofit Can Kiti, 8 hnch, NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools NY	Rossevelt Midalle School	2691		classroom	12	12	0.0550	0.0220	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rosesevel Mididle School	2701		classroom	3	3	0.0360	0.0120	F PL 32 w	LED Retrofit Can Kit, 8 hnch, NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools Mr	Roosevelt Midale School	2711		classroom	12	12	0.0550	0.0220	4, 2 -L-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rosevevel Midale School	2721		classroom	3	3	0.0360	0.0120	CFPL 32w	LED Retrofit Can Kiti, 8 hch, NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools NY	Rosesevel Mididle School	2731		classroom	12	12	0.0550	0.0220	1x4, -- -amp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools Mr	Rossevelt Midale School	2741		classioom	1	1	0.0360	0.0120	PL 32W	LED Retrofit Can Kit, 8 hnch, NLO	818	0.04	0.01	0.02	29	10	20
Roosevelt Schools NY	Rosevevel Midale School	2751		Office	2	2	0.0820	0.0330	2x4, --Lamp T8	LEED int Diviver Lamps, (3) 4 Lamps	1,760	0.16	0.07	0.10	289	116	172
Roosevelt Schools Nr	Rossevelt Midale School	2761		Storage	5	5	0.0550	0.0220	X4, 2-Lamp T8	LED Mnt. Diviver Lamps, (2) 4 Lamps, XXL	600	0.28	0.11	0.17	${ }^{165}$	66	99
Roosevelt Schools Mr	Rossevelt Midale School	2771		Restrom, Mens	4	4	0.0360	0.0090	${ }_{\text {PL }} 32 \mathrm{w}$	LED Retrofit Can Kit, 6 nch, NLO	1,760	0.14	0.04	0.11	253	${ }^{63}$	190
Roosevelt Schools NY	Rosevevel Midale School	2781		Restrom, Mens	4	4	0.0550	0.0220	1x, 2-2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XL	1,760	0.22	0.09	0.13	387	155	232
Roosevelt Schools Mr	Rossevelt Midale School	2791		Restrom, Mens	1	1	0.0450	0.0220	x3, 2-Lamp ${ }^{\text {d8 }}$	LED int. Diviver Lamps, (2) $3^{\text {L Lamps, } \mathrm{XL}}$	1,760	0.05	0.02	0.02	${ }^{79}$	39	40
Roosevelt Schools Mr	Rosevelt Midalle School	2801		Jc	1	1	0.0550	0.0220	1x4, -2-amp T8	LED int. Diver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Rosevevet Midalle School	2811		Restroom, Womens	4	4	0.0360	0.0090	CF PL 32 w	LED Retrofit Can Kit 6 hrch, NLO	1,760	0.14	0.04	0.11	253	63	190
Roosevelt Schools NY	Roosevelt Midide School	2821		Restroom, Womens	4	4	0.0550	0.0220	x4, 2 -Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps, XL	1,760	0.22	0.09	0.13	${ }^{387}$	155	232
Roosevelt Schools NY	Rosevelt Midalle School	2831		Restroom, Womens	1	1	0.0450	0.0220	1x3, 2-Lamp T8		1,760	0.05	0.02	0.02	${ }^{79}$	39	40
Roosevelt Schools NY	Rosevevel Midale School	2841		classroom	12	12	0.0550	0.0220	1x, 2-2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rosesevel Mididle School	2851		classroom	1	1	0.0360	0.0120	F PL 32 w	LED Retrofit Can Kit, 8 h ch, NLO	818	0.04	0.01	0.02	${ }^{29}$	10	20
Roosevelt Schools NY	Rosevelt Midalle School	2861		Restroom	1	1	0.0360	0.0120	PL 32w	LED Retrofit Can Kiti, 8 Inch, NLO	1,760	0.04	0.01	0.02	${ }^{63}$	21	42
Roosevelt Schools NY	Rosevevel Midale School	2871		Storage	1	1	0.0550	0.0220	1x, 2-2-amp T8	LEED int Diviver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	${ }^{33}$	13	20
Roosevelt Schools Mr	Rosesevel Mididle School	2881		Classroom	12	12	0.0550	0.0220	1x4, -- -amp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rossevelt Midale School	2891		classroom	3	3	0.0360	0.0120	PL 32w	LED Retrofit Can Kit, 8 nch, NLO	818	0.11	. 04	0.07	8^{88}	29	59
Roosevelt Schools NY	Rosevevel Midde School	2901		classroom	12	12	0.0550	0.0220	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rossevelt Mididle School	2911		classroom	3	3	0.0360	0.0120	L32\%	LED Retrofit Can Kiti, 8 hch, NLO	818	0.11	0.04	0.07	${ }_{88}$	29	59
Roosevelt Schools NY	Roseseeth Midale School	2921		Breakroom	8	8	0.0710	0.0260	Lamp 40 Biax	LED Int. Diviver Lamp, (2) 40w BX EQ	2.000	0.57	0.21	0.36	${ }^{1,136}$	416	720
Roosevelt Schools NY	Roosevet Midale School	2931		Breakroom	5	5	0.0360	0.0090	CF PL 32 w	LED Retrofit Can Kit, 6 nch, MLO	2,000	0.18	0.05	0.14	360	90	270

Roosevelt UFSD, NY
Exhibit D-5-1
ECM 1 - LED Lighting and Lighting Controls Upgrade
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \mathrm{kN} \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	Total kwn Proposed	Total kWh
Roosevelt Schools NY	Roosevelt Midide School	2941		Breakroom Task Lighting	6	6	0.0280	0.0110	1x4, --Lamp T8	LED Int. Diviver Lamp, (1) 4 Lamp	2,000	0.17	0.07	0.10	336	132	204
Roosevelt Schools NY	Roosevell Midale School	2951		Restroom	1	1	0.0360	0090	32w	LED Retrofit an Kit, 6 lech, , NLO	.760	0.04	0.01	. 03	${ }^{63}$	16	48
Sosevelt Schools NY	Rosesevel Midide School	2961		room	1	1	0.0320	0160	-Lamp T8	LED int. Driver Lamps, (2) ${ }^{2}$ Lamps	1,780	0.03	0.02	0.02	56	28	28
Roosevelt Schools NY	Roosevelt Midale School	2971		Office	2	2	0.0820	0.0330	2x4, -Lamp T8	LED Int. Diviver Lamps, (3) 4 Lamps	1,760	0.16	0.07	0.10	289	116	172
Roosevelt Schools NY	Rossevelt Midale School	2981		Electrical Rm	2	2	0.055	0.0220		LED int. Driver Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	${ }^{66}$	26	40
Roosevelt Schools NY	Rosesevel Midide School	2991		Classioom	12	12	0.0550	0.0220	-amp	LED Int. Divier Lamps, (2) 4'Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rosesevet Midide School	3001		classroom	2	2	0.0360	0.0120	CF PL 32 w	LED Retofotit Can Kit, 8 Inch, , NLO	818	0.07	0.02	0.05	59	20	39
Roosevelt Schools MY	Roosevelt Midale School	3011		classroom	12	12	0.0550	0.0220	4, 2--Lamp T8	LED Int. Divier Lamps, (2) 4'Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rosesevel Midale School	3021		Classoom	2	2	0.0360	0.0120	PL 32W	LED Retofofic an kit, 8 nch, , NLO	818	0.07	0.02	0.05	59	20	39
Roosevelt Schools NY	Rosesevet Midide School	3031		Storage	1	1	0.055	0.0220	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools MY	Roosevelt Midide School	3041		Classroom	12	12	0.0550	0.0220	1x, 2--Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rosevert Midide School	3051		Classioom	2	2	0.0360	0.0120	FPL 32 w	LED Retofofic an kit, 8 nch, , NLO	818	0.07	0.02	0.05	59	20	39
Roosevelt Schools MY	Roosevelt Midale School	3061		classroom	12	12	0.0550	0.0220	1x, 2-2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XxL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools MY	Rosesvell Midale School	3071		classroom	3	3	0.0360	0.0120	CF PL 32 W	LED Retrofit Can Kit. 8 nch, NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools NY	Rosesevel Midide School	3081		Stora	1	1	0.0550	0.0220	8, 2-Lamp T8	LED int. Driver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools MY	Roosevelt Midale School	3091		Storage	1	1	0.0550	0.0220	1x, 2-2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools MY	Rosesevel Midale School	3101		Storage	2	2	0.0710	0.0350	Lamp 40 Biax	LED Retorfit Panel Kit, 2x, NLL	600	0.14	0.07	0.07	85	42	43
Roosevelt Schools NY	Roosevelt Midalle School	3111		Storage	2	2	0.0820	0.03302	2x4, --Lamp T8	LeD Int. Driver Lamps, (3) 4 Lamps	600	0.16	0.07	0.10	98	40	59
Roosevelt Schools MY	Roosevelt Midale School	3121		Classroom	12	12	0.0550	0.0220	1x, 2-2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools MY	Rosesevel Midide School	3131		Classroom	3	3	0.0360	0.0120	P PL 32 W	LED Retofotit an kit, 8 Inch, , NLO	818	0.11	0.04	0.07	88	29	59
Roosevelt Schools MY	Rosesevel Midide School	3141		Classroom	12	12	0.0550	0.0220	1x4, 2--amp T8	LED Int. Divive Lamps, (2) 4'Lamps, XXL	318	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Rosesevet Midide School	3151		classroom	2	2	0.0360	0.0120	CF PL 32 w	LED Retofotit Can Kit, 8 Inch, NLO	818	0.07	0.02	0.05	59	20	39
Roosevelt Schools NY	Roosevelt Midide School	3161		Storage	1	1	0.0550	0.0220	1x4, 2-Lamp T8	LED int. Driver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Roosevelt Midale School	3171		classroom	12	12	0.0550	0.0220	1x, 2--Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools MY	Roosevelt Midide School	3181		classroom	2	2	0.0360	0.0120	CF PL 32w	LED Retroftit Can Kit, 8 Inch, NLO	818	0.07	0.02	0.05	59	20	39
Roosevelt Schools NY	Roosevelt Midide School	3191		classroom	12	12	0.0550	0.0220	1x, 2--Lamp T8	LED Int. Divier Lamps, (2) 4'Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Roosevelt Midale School	3201		classroom	2	2	0.0360	0.0120	CF PL 32 w	LED Retroftican Kit, 8 nch, NLO	818	0.07	0.02	0.05	59	20	39
Roosevelt Schools MY	Roosevelt Midide School	3211		Electrical Rm	2	2	0.055	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.11	0.04	.07	66	26	40
Roosevelt Schools NY	Rosevevel Midale School	3221		classroom	12	12	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Roosevelt Midalle School	3231		classroom	2	2	0.0360	0.0120	FPL 32w	LED Retoroft Can Kit, 8 Inch, , NLO	818	0.07	0.02	0.05	59	20	39
Roosevelt Schools MY	Roosevelt Midide School	3241		office	12	12	0.055	0.0220	1x, 2-2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	818	0.66	0.26	0.40	540	216	324
Roosevelt Schools NY	Roosevelt Midide School	325.		office	1	1	0.0360	0.0120	CF PL 32 W	LED Retroftit Can Kit, 8 nch, NLO	818	0.04	0.01	0.02	29	10	20
Roosevelt Schools NY	Roseselt Midide School	3261		office	1	1	0.0820	0.0330	x4, 3-Lamp T8	LED Int. Diver Lamps, (3) 4'Lamps	1,760	0.08	0.03	0.05	144	58	86
Roosevelt Schools MY	Rosevelt Middle School	${ }_{327} 1$		office	1		0.0820	0.0330	2x4, --Lamp T8	LED Int. Driver Lamps, (3) 4 Lamps	1,760	0.08	0.03	0.05	144	${ }_{58}$	86

Roosevelt UFSD, NY
Exhibit D-5-1
ECM 1- LED Lighting and Lighting Controls Upgrade
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \mathrm{kN} \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	Total kwh Proposed	Total kWh
Roosevelt Schools NY	Roosevelt Midide School	3281		Halway	25	25	0.0710	0.0350	2-Lamp 40 Biax	LED Retorfit Panel Kit, 2x, NLO	3,000	1.78	0.88	0.90	5,325	2,625	2,700
Roosevelt Schools NY	Roosevelt Midide School	3291		Halway	8	8			Ext Sign - Led	will Not be Retofoit	8,760						
Roosevell Schools NY	Rossevelt Middle School	3301		Hay	37	37	0.0360	0.0120	CFPL 32N	LED Retrofit Can Kit. 8 nch, NLO	3,000	1.33	0.44	0.89	3,996	1,332	2.664
Roosevelt Schools NY	Roosevelt Midide School	331		office	9	9	0.0360	0.0120	CF PL 32 W	LED Retrofit an Kkit, 8 nch, NLO	1,760	0.32	0.11	0.22	570	190	380
Roosevelt Schools NY	Rossevelt Midale School	3321		pfice	6	6	${ }^{0.0360}$	0.0090	PL 32W	LED Retrofit Can Kit, 6 nch, NLO	1,760	0.22	0.05	0.16	380	95	285
Roosevelt Schools MY	Rosesevel Midide School	3331		office	2	2			Exit Sign - Leo	will Not be Retofoit	8,760	-	.				
Roosevelt Schools NY	Roosevet Midide School	334 ,		office	4	4	0.0710	0.0350	2-Lamp 40 Biax	LED Retroit Panel Kit 2x2, NLO	1,760	0.28	0.14	0.14	500	246	253
Roosevelt Schools MY	Roosevelt Midale School	3351		Vestibule	2	2	0.0360	0.0120	32w	LED Retrofit an Kit, 8 nch, NLO	3,000	0.07	0.02	. 05	216	72	144
Roosevelt Schools NY	Rosesevet Midale School	3361		Vestib,	1	1			Exit Sign - Led	will Not be Retofoit	8,760						
Roosevelt Schools MY	Rosesevet Midale School	3371		office	2	2	0.0820	0.0330	2x, 3 --Lamp T8	LED Int. Diver Lamps, (3) 4 Lamps	1,760	0.16	0.07	0.10	289	116	172
Roosevelt Schools MY	Roosevelt Midide School	3381		office	2	2	0.0820	0.03302	2x4, 3-2amp T8	LED Int. Divive Lamps, (3) 4 Lamps	1,760	0.16	0.07	0.10	289	116	172
Roosevelt Schools NY	Rosevert Midide School	3391		office	4	4	0.0710	0.0260	-amp 40 Biax	LED Int. Diviver Lamp, (2) 40w BX EQ	1,760	0.28	0.10	0.18	500	183	317
Roosevelt Schools MY	Roosevelt Midale School	3401		office	2	2	0.0820	0.0330	2x4, 3-2mamp T8	LED Int. Diviver Lamps, (3) 4 Lamps	1,760	0.16	0.07	0.10	289	116	172
Roosevelt Schools MY	Rosesvell Midale School	341		office	4	4	0.0710	0.0260	2-Lamp 40 Biax	LED Int. Diviver Lamp, (2) 40w Bx EQ	1,760	0.28	0.10	0.18	500	183	317
Roosevelt Schools MY	Rosesevel Midale School	3421		office	2	2	0.0820	0.0330	4, 3-Lamp T8	LED Int. Diviver Lamps, (3) 4 Lamps	1,760	0.16	0.07	0.10	289	116	172
Roosevelt Schools MY	Roosevelt Midale School	3431		Restroom	1	1	0.0360	0.0090	CF PL 32 w	LED Retrofit Can Kit, 6 nch, NLO	1,760	0.04	0.01	0.03	63	16	48
Roosevelt Schools MY	Rosesevel Midale School	3441		Restroom	1	1	0.0320	0.0160	1x2, 2-Lamp T8	LED Int. Diviver Lamps, (2) 2 Lamps	1,760	0.03	0.02	0.02	56	28	28
Roosevelt Schools MY	Rosesevel Midale School	3451		Restroom	1	1	0.0320	0.0160	2, 2-Lamp T8	LED int. Driver Lamps, (2) 2 Lamps	1,760	0.03	0.02	0.02	56	28	28
Roosevelt Schools MY	Roosevelt Midale School	3461		Restroom	1	1	0.0360	0.0090	CF PL 32 w	LED Retrofit Can Kit, 6 nch, NLO	1,760	0.04	0.01	0.03	${ }^{63}$	16	48
Roosevelt Schools MY	Rosesevel Midide School	3471		Halway	6	6	0.0710	0.0260	Lamp 40 Biax	LED Int. Diviver Lamp, (2) 40w BX EQ	3,000	0.43	0.16	0.27	,278	468	810
Roosevelt Schools NY	Rosesevet Midale School	3481		Halway	2	2			Exit Sign - Leo	will Not be Retofoft	8,760						
Roosevelt Schools NY	Rosesevet Midide School	3491		Storage	2	2	0.0550	0.022	1x4, 2--2mp T8	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	66	26	40
Roosevelt Schools MY	Roosevelt Midide School	3501		office	2	2	0.0820	0.0330	2x, 3 --amp T8	LED Int. Divier Lamps, (3) 4 Lamps	1,760	0.16	0.07	. 10	289	116	172
Roosevelt Schools NY	Rosevert Midide School	3511		Office Task Lighting	4	4	0.0280	0.0110	1x4, 1 -Lamp T8	LED Int. Diver Lamp, (1) 4 Lamp	2,200	0.11	0.04	0.07	246	97	150
Roosevelt Schools MY	Roosevelt Midale School	3521		Storage	1	1	0.0550	0.0220	1x4, 2-2-amp T8	LED Int Diviver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools MY	Roosevelt Midide School	3531		Storage	1	1	0.0550	0.0220	1x4, 2--amp T8	LED Int. Divier Lamps, (2) 4'Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Roosevelt Midale School	3541		Halway	8	8	0.0710	0.0350	2-Lamp 40 Biax	LED Retroft Panel Kit 22x, NLO	3,000	0.57	0.28	0.29	1,704	840	${ }^{864}$
Roosevelt Schools MY	Roosevelt Midide School	3551		Halmay	2	2			Exts ign - Leo	will Not be Retoroft	8,760						
Roosevelt Schools NY	Roosevelt Midide School	3561		Halway Case	6	6	0.0240	0.0110	1x3, 1-Lamp T8	LED Int. Diviver Lamp, (1) $3^{\text {L Lamp }}$	3,750	0.14	0.07	0.08	540	248	${ }^{293}$
Roosevelt Schools NY	Roosevelt Midalle School	3571		Halway Case	1	1	0.0280	0.0110	1x4, -1-Lamp T8	LED Int. Diviver Lamp, (1) 4 Lamp	3,750	0.03	0.01	0.02	105	41	64
Roosevelt Schools MY	Roosevelt Midide School	3581		Elerical Rm	1	1	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	750	0.06	0.02	0.03	41	17	25
Roosevelt Schools NY	Roosevelt Midide School	3591		trm	1	1	0.0550	0.0220	1x4, 2-Lamp 8	LED Int. Driver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Rosevelt Midide School	3601		Cardio Room	6	6	0.0550	0.0220	2x4, --Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps	818	0.33	0.13	0.20	270	108	162
Roosevelt Schools MY	Rosevelt Midde School	3611		Cardio Room	4	4	0.0355	0.0130	A 1 -Lamp 40 Biax	LED int. Diviver Lamp, (1) 40w BX EQ	${ }_{818}$	0.14	0.05	0.09	116	${ }^{43}$	74

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { Qty } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{aligned} & \text { Total Post } \\ & \text { kW } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total KWh Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools Nr	Rosevevel Midale School	3621		Cardio Room	1	1	0.0360	0.0090	.32w	LED Retrofit Can Kit, 6 hnch, NLO	818	0.04	0.01	0.03	${ }^{29}$	7	22
Roosevelt Schools NY	Roosevelt Midale School	3631		brage	1	1	. 0550	. 0220	4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps	600	.06	0.02	0.03	${ }^{33}$	13	20
Sosevelt Schools NY	Rossevelt Midale School	3641		Storage	2	2	0.055	0.022	1x4, 2-Lamp T8	LED int. Diver Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	${ }^{66}$	26	40
Roosevelt Schools NY	Rossevelt Midale School	3651		Boys Locker Room	5	5	0.0710	0.0350	2-Lamp 40 Biax	LED Retrofit Panel $\mathrm{Kt,2}$ 2x2, NLO	1,760	0.36	0.18	0.18	625	308	317
Rosesevel Schools NY	Roosevelt Midale School	3661		Boys Locker Room	2	2			Exit Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools NY	Rossevelt Midale School	3671		Boys Locker Room	8	8	0.0550	0.022	4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps	1,760	44	0.18	0.26	74	310	465
Roosevelt Schools NY	Rossevelt Midalle School	3681		Boys Locker Room Showers	6	6	0.0550	0.0220	1x4, 2--amp T8	LED Int. Diviver Lamps, (2) 4 Lamps, XL	1,760	0.33	0.13	0.20	581	232	348
Roosevelt Schools Nr	Roosevelt Midale School	3691		Storage	2	2	0.0550	0.0220	1xt, --Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	600	11	0.04	0.07	${ }^{66}$	26	40
Roosevelt Schools Mr	Roosevelt Midale School	3701		Boys Locker Room Showers	3	3	380	0.0090	PL 32 W	LED Retrofit Can Kit, 6 nch, NLO	1,760	0.11	0.03	0.08	190	48	143
Roosevelt Schools NY	Roosevet Midale School	3711		Boys Locker Room Showers	1	1	0.0450	0.0220	x3, 2-Lamp T8	LED Int. Diviver Lamps, (2) $3^{\text {L Lamps, }}$, XL	1,760	0.05	0.02	0.02	${ }^{79}$	39	40
Roosevelt Schools NY	Rosesevel Mididle School	3721		Boys Locker Room Showers	3	3	0.0550	0.0220	x4, 2-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps, XL	60	0.17	0.07	0.10	290	116	174
Roosevelt Schools NY	Roosevelt Midale School	3731		Boys Locker Room Showers	2	2			Exit Sign - Led	will Not be Retroft	8,760		-		-		
Roosevelt Schools NY	Rosevevel Midale School	3741		Boys Locker Room Showers	5	5	0.0710	0.0350	Lamp 40 Biax	LED Retrofit Panel Kt , 2x2, NLO	1,760	0.36	0.18	0.18	625	308	317
Roosevelt Schools NY	Rosesevel Mididle School	3751		Office	1	1	0.0820	0.0330	2x, 3 --amp T8	LED int. Diviver Lamps, (3) 4 Lamps	.760	0.08	0.03	0.05	${ }^{144}$	58	${ }_{8}$
Roosevelt Schools Mr	Rossevelt Midale School	3761		Batrroom	2	2	0.0310	0.0060	L 13 w	Led Lamp, ALLine, LLo	704	0.03	0.01	0.01	18	8	10
Roosevelt Schools NY	Rosevevel Midale School	3771		Batroom	1	1	0.0320	0.0160	12, 2--Lamp T8	LEED Int. Diver Lamps, (2) $2^{\text {L Lamps }}$	704	0.03	0.02	0.02	23	11	11
Roosevelt Schools Nr	Rossevelt Midale School	3781		jc	1	1	0.0550	0.0220	1x4, -- -amp T8	LED int. Divier Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	${ }_{33}$	13	20
Roosevelt Schools Mr	Rossevelt Midale School	3791		Bathrom, Men's	5	5	0.0360	0.0090	${ }_{\text {PL }} 32 \mathrm{w}$	LED Retrofit Can Kit, 6 nch, NLO	1,760	0.18	0.05	0.14	317	79	238
Roosevelt Schools NY	Rosevevel Midale School	3801		Bathrom, Mer's	4	4	0.0550	0.0220	1x, 2-2-amp T8	LED Int. Driver Lamps, (2) 4 Lamps, XL	1,760	0.22	0.09	0.13	387	155	232
Roosevelt Schools Mr	Rossevelt Midale School	3811		Batrrom, Women's	5	5	0.0360	0.0090	$\mathrm{Pl}^{\text {L } 32 \mathrm{w}}$	LED Retrofit Can Kit, 6 nch, NLO	1,760	18	0.05	0.14	${ }^{317}$	79	238
Roosevelt Schools NY	Rosevelt Midalle School	3821		Batrrom, Women's	4	4	0.0550	0.0220	1x4, 2-2amp T8	LED Int. Driver Lamps, (2) 4 Lamps, XL	1,760	0.22	0.09	0.13	387	155	232
Roosevelt Schools NY	Rosevevet Midalle School	3831		sc	1	1	0.0550	0.0220	1xt, 2--amp T8	LED int. Divier Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	${ }^{33}$	13	20
Roosevelt Schools NY	Roosevelt Midide School	3841		Girs Locker Room	5	5	0.0710	0.0350	Lamp 40 Biax	LED Retrofit Panel Kt , 2x2, nLo	1,760	${ }_{0} .36$	0.18	0.18	625	308	317
Roosevelt Schools NY	Rosevelt Midalle School	3851		Girs Locker Room	2	2			Exit Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools NY	Rosevevel Midale School	3861		Girss Locker Room	8	8	0.0550	0.0220	1x4, 2-Lamp T8	LEED int Diviver Lamps, (2) 4 Lamps	1,760	0.44	0.18	0.26	774	310	465
Roosevelt Schools NY	Rosesevel Mididle School	3871		Girs Locker Room Showers	6	6	0.0550	0.0220	1x4, -2-amp T8	LED Int. Divier Lamps, (2) 4 Lamps, XL	1,760	${ }_{0} .33$	0.13	0.20	581	232	348
Roosevelt Schools NY	Rosevelt Midalle School	3881		Storage	1	1	0.0550	0.0220	1x4, -2-amp T8	LED int. Diver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	${ }^{33}$	13	20
Roosevelt Schools NY	Rosevevel Midale School	3891		Girs Locker Room Showers	3	3	0.0360	0.0090	CF PL 32 w	LED Retrofit Can Kit, 6 nch, NLO	1,760	0.11	0.03	0.08	190	48	143
Roosevelt Schools Mr	Rosesevel Mididle School	3301		Girs Locker Room Showers	1	1	0.0450	0.0220	1x, 2--Lamp T8	LED Int. Divier Lamps, (2) $3^{\text {L Lamps, } \mathrm{XL}}$	1,760	0.05	0.02	0.02	79	39	40
Roosevelt Schools NY	Roseseet Midalle School	3911		Girs Locker Room Showers	3	3	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Driver Lamps, (2) 4 Lamps, XL	1,760	0.17	0.07	0.10	290	${ }_{116}$	174
Roosevelt Schools NY	Roseveret Midde School	3921		Girs Locker Room Showers	2	2			Exti Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools NY	Roseveret Midale School	3931		Girs Locker Room Showers	5	5	0.0710	0.0350	Lamp 40 Biax	LED Retrofit Panel Kt , 2x2, NLO	1,760	36	0.18	0.18	625	308	317
Roosevelt Schools NY	Rossevelt Midale School	3341		office	1		0.0820	. 0330	x4, 3-Lamp T8	LED int. Diviver Lamps, (3) 4 Lamps	1,760	0.08	0.03	0.05	${ }^{144}$	58	${ }^{86}$
Roosevelt Schools NY	Roosevet Midale School	3951		Batroom	2	2	0.0130	0.0060	cFL 13w	LED Lamp, ALLine, LLo	704	0.03	0.01	0.01	18		10

Roosevelt UFSD, NY
Exhibit D-5-1
ECM 1 - LED Lighting and Lighting Controls Upgrade
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { aty } \\ \hline \end{gathered}$	$\underset{\substack{\text { Proposed } \\ \text { aty }}}{ }$	Existing kw	Proposed kw	Existing Description	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ k w \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|l\|l\|l\|l\|} \hline \text { Tost } \\ k w \end{array}$	$\begin{array}{\|c} \text { Sotal } \\ \text { Saved kw } \end{array}$	Total kWh Existing	Total kWh Proposed	Total kWh Saved
Roosevelt Schools NY	Roosevelt Midide School	3961		Batroom	1	1	0.0320	0.0160	$1 \times 2,2$-Lamp ${ }^{\text {8 }}$	LED Int. Diviver Lamps, (2) 2 ${ }^{2}$ Lamps	704	0.03	0.02	0.02	23	11	11
Roosevelt Schools NY	Roosevell Midale School	3971		allway	13	13	0.0710	0.0350	2-Lamp 40 Biax	LED Retorfit Panel Kit, 2x, MLo	3,000	0.92	0.46	0.47	2.769	1,365	.404
Roosevelt Schools MY	Rosesevel Midale School	3981		Hay	4	4	0.0360	120	CF	LED Retrofit an K Kit, 8 Inch, , NLO	.000	0.14	0.05	0.10	432	144	288
Roosevelt Schools NY	Rosesevet Midide School	3991		Halway	2	2			Extitign - Led	will Not be Retoroft	8,760						
Roosevelt Schools NY	Roosevelt Midide School	4001		oym	24	24	0.4560	0.1420	(8) CF PL 7ow	LED High Bay, 23 K Lumens, 1x2, Osf, WG, PM	3,221	0.94	3.41	7.54	35,251	10,977	24,273
Roosevelt Schools MY	Rosesevel Midide School	401		Gym	4	4	0.0360	2120	CFPL3	LED Retofotit an K Kit, 8 Inch, , NLO	3,221	0.14	0.05	0.10	464	155	309
Roosevelt Schools NY	Rosesevet Midide School	4021		sym	4	4			Extitign - Led	will Not be Retoroft	8,760						
Roosevelt Schools MY	Roosevelt Midide School	4031		Storage	2	2	0.0550	0.0220	1x4, 2-1amp 8	LED int. Driver Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	${ }_{6}$	26	40
Roosevelt Schools NY	Rosesevet Midale School	404.		Storage	2	2	0.0550	220	1x4, 2-Lamp T8	LED Int. Driver Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	66	26	40
Roosevelt Schools NY	Rosesevet Midide School	4051		Auditorium	40	40	0.055	0.0220	1xa, 2-Lamp T8	LED Int. Diver Lamps, (2) 4 Lamps, XL, H1, SCAF	1,760	2.20	0.88	1.32	3.872	1.549	2,323
Roosevelt Schools MY	Roosevelt Midide School	4061		Auditorium	20	20	0.1000	0.0170	Inc 100w	LED Lamp, RPAR38, NLO, 120v DIM, H1, SCAF	1,760	2.00	0.34	${ }_{1.66}$	3.520	598	2.922
Roosevelt Schools NY	Roosevelt Midale School	4071		Auditorium	4	4			Exit Sign-LeD	will Not be Retroft	8,760		-				
Roosevelt Schools MY	Roosevelt Midale School	4081		Auditorium	2	2	0.0360	0.0120	CFFL P 32 W	LED Retrofit Can Kit, 8 hnch, NLO, DIMM120	1,760	0.07	0.02	0.05	127	42	84
Roosevelt Schools MY	Roosevell Midale School	4091		Stage	18	18	0.0550	0.0220	1x4, 2-Lamp 8	LED Int. Diver Lamps, (2) 4 4 Lamps, H H1	1,760	0.99	. 40	0.59	, 742	697	1.045
Roosevelt Schools MY	Rosesevel Midale School	4101		Storage	2	2	0.0550	0.0220	1x4, 2-Lamp ${ }^{\text {8 }}$	LED int. Diver Lamss, (2) 4 4 Lamps, XL	600	0.11	0.04	0.07	66	26	40
Roosevelt Schools NY	Roosevelt Midide School	4111		Stroage	2	2	0.0550	0.0220	1xa, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	66	26	40
Roosevelt Schools NY	Rosesevel Midale School	4121		Storage	2	2	0.1090	0.0440	2xa, -L-Lamp T8	LED int. Driver Lamps, (4) 4 Lamps	600	0.22	0.09	0.13	${ }_{131}$	53	78
Roosevelt Schools MY	Rosesevel Midale School	413,		Audio Room	3	3	0.0710	0.0350	2-Lamp 40 Biax	LED Retorfit Panel Kit, 2×2, MLO	600	0.21	0.11	0.11	128	63	65
Roosevelt Schools MY	Roosevelt Midale School	414.		Audio Room	5	5	0.1000	0.0170	Inc 100w	LED Lamp, RPAR38, NLO, 120V DIM	600	0.50	0.09	0.42	300	51	249
Roosevelt Schools NY	Roosevelt Midide School	4151		Storage	1	1	0.0550	0.0220	$2 \times 4,2$-lamp 78	LED int. Driver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Rosevelt Middle School	4161		Halway	6	6	0.0710	0.0350	2-Lamp 40 Biax	LED Retroft Panel Kit, 2x, MLo	3,000	0.43	0.21	0.22	1,278	630	648
Roosevelt Schools NY	Rosesevet Midide School	4171		Halway	9	9	0.0360	0.0120	CF PL 32 W	LED Retofotit an Kit, 8 Inch, NLO	3,000	0.32	0.11	0.22	972	324	648
Roosevelt Schools NY	Roosevelt Midide School	4181		Halway	2	2			Exitign - Led	will Not be Rerofoft	8,760						
Roosevelt Schools NY	Roseseet Middle School	4191		Halway Case	6	6	0.0240	0.0110	1x3, 1-1/amp T8	LED Int. Driver Lamp, (1) $3^{\text {L Lamp }}$	3,750	0.14	0.07	0.08	540	248	293
Roosevelt Schools MY	Roosevelt Midide School	4201		Halmay	1	1	0.0280	0.0110	$1 \times 4,1-\mathrm{Lamp}$ T8	LED Int. Driver Lamp, (1) 4 Lamp	3,750	0.03	0.01	0.02	105	41	64
Roosevelt Schools NY	Roosevelt Midide School	421		classroom	15	15	0.0820	0.0330	2xa, 3-1amp 8	LED Int. Divier Lamps, (3) 4'Lamps	818	1.23	0.50	0.74	1.006	405	601
Roosevelt Schools MY	Roosevelt Midide School	4221		Classroom	5	5	0.035	0.0130	A 1 -Lamp 40 Biax	LEED Int. Diviver Lamp, (1) 40w BX EQ	818	0.18	0.07	0.11	145	${ }_{53}$	92
Roosevelt Schools MY	Roosevelt Midide School	4231		classroom	2	2			Extitign-LED	will Not be Retoroft	8,760						
Roosevelt Schools NY	Roosevelt Midide School	424 ,		classroom	3	3	0.0360	0.0090	CFPL 32 W	LED Reterofit an Kit, 6 nch, NLO	818	0.11	0.03	0.08	88	22	${ }^{66}$
Roosevelt Schools NY	Roosevelt Midide School	4251		Classroom Task Lighing	1	1	0.0280	0.0110	1x4, 1 -Lamp T8	LED int. Diviver Lamp, (1) 4 Lamp	818	0.03	0.01	0.02	23	9	14
Roosevelt Schools MY	Roosevelt Midide School	4261		Pratice Room	1	1	0.0820	0.0330	2xa, 3-Lamp 88 $^{\text {a }}$	LED Int. Driver Lamps, (3) 4 Lamps	818	0.08	0.03	0.05	67	${ }^{27}$	40
Roosevelt Schools NY	Rosesevel Midide School	4271		Storage	4	4	0.0550	0.0220	2xa, -2-1amp T8	LED int. Driver Lamps, (2) 4 Lamps	600	0.22	0.09	0.13	132	53	79
Roosevelt Schools NY	Roseselt Midide School	428 ,		Storge	4	4	0.0820	0.0330	2x4, 3-Lamp T8	LED Int. Diverer Lamps, (3) 4'Lamps	600	0.33	0.13	0.20	197	79	118
Roosevelt Schools MY	Rosevelt Midde School	4291		classroom	12	12	0.0820	0.0330	2x4, 3-1amp T8	LED int. Divier Lamps, (3) 4 Lamps	818	0.98	0.40	0.59	805	324	481

Roosevelt UFSD, NY
Exhibit D-5-1
ECM 1- LED Lighting and Lighting Controls Upgrade
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { afy } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { aty } \end{gathered}$	Existing kw	Proposed kw	Existing Dessription	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ k w \end{gathered}$	$\begin{gathered} \text { Total Post } \\ k w \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \\ \hline \end{gathered}$	Total kWn Existing	Total kWh Proposed	$\begin{gathered} \text { Total kWh } \\ \text { Saved } \end{gathered}$
Roosevelt Schools NY	Rossevelt Midale School	4301		classroom	15	15	0.0820	0.0330	$2 \times 4,3-\mathrm{Lamp}$ T8	LEED int Diviver Lamps, (3) 4 Lamps	818	1.23	0.50	0.74	1,006	405	601
Roosevelt Schools NY	Roosevelt Midale School	4311		assroom	5	5	0.0355	0.0130	mp 40 Biax	LED Int. Diver Lamp, (1) 40w BXEQ	818	0.18	. 07	0.11	145	53	92
Sosevelt Schools NY	Rossevelt Midale School	4321		Classrom	2	2			Exit Sign - Led	will Not be Retroft	8,760		.		.		
Roosevelt Schools NY	Rossevelt Midale School	4331		classroom	3	3	0.0360	0.0090	cF PL 32 W	LED Retrofit Can Kit, 6 hnch, NLO	818	0.11	0.03	0.08	88	22	66
Rosesevel Schools NY	Roosevelt Midale School	4341		Classroom Task Lighing	1	1	0.0280	0.0110	1x, , --Lamp T8	LED Int. Diver Lamp, (1) 4 Lamp	818	0.03	0.01	0.02	${ }^{23}$	9	14
Roosevelt Schools NY	Rossevelt Midale School	4351		Pratice Roo	1	1	0.0820	0.0330	2x4, --2amp T8	LED int. Divier Lamps, (3) 4 Lamps	818	0.08	0.03	0.05	${ }^{67}$	27	40
Roosevelt Schools NY	Rossevelt Midalle School	4361		Halway	11	11	0.0820	0.0330	2x4, 3 -Lamp T8	LED int. Diver Lamps, (3) 4 Lamps	3,000	0.90	0.36	0.54	2,706	1,089	1,617
Roosevelt Schools Nr	Roosevelt Midale School	4371		ier Rm	13	13	0.0550	0.0220	x4, 2-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	600	72	0.29	0.43	429	172	257
Roosevelt Schools Mr	Roosevelt Midale School	4381		Silie Rn	2	2			Extitign - Led	will Not be Retroft	8,760				.		
Roosevelt Schools NY	Rossevelt Midalle School	4391		Boier Rm	1	1	0.0500	0.0500	Frog Eyes, 2 x	will Not be Retroft	8,760	0.05	0.05		438	438	
Roosevelt Schools NY	Rosesevel Mididle School	4401		Generator Rm	4	4	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	600	. 22	0.09	0.13	${ }^{132}$	53	79
Roosevelt Schools NY	Roosevelt Midale School	4411		Generator Rm	1	1			Exit Sign - Led	will Not be Retroft	8,760		-		.		
Roosevelt Schools NY	Rosevevel Midale School	4421		trm	6	6	0.0550	0.0220	1x4, -2-amp T8	LEED int Diviver Lamps, (2) 4 Lamps	600	0.33	0.13	0.20	198	79	119
Roosevelt Schools NY	Rosesvelt Mididle School	4431		Electrical Rm	6	6	0.0550	0.022	1x4, --Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	600	${ }_{0} .33$	0.13	0.20	198	79	119
Roosevelt Schools Mr	Rossevelt Midale School	4441		Electrical Rm	1	1			Exit Sign - Led	will Not be Retroft	8,760		.		.		
Roosevelt Schools NY	Rosevevel Midale School	4451		Electrical Rm	2	2	0.0550	0.0220	1x4, -2-amp T8	LEED Int. Diver Lamps, (2) 4 Lamps	750	0.11	0.04	0.07	83	${ }_{3}$	50
Roosevelt Schools Nr	Rossevelt Midale School	4461		Electrical Rm	1	1	0.0500	0.0500	rog Eyes, 2 x	will Not be Retroft	8,760	0.05	0.05		438	438	
Roosevelt Schools Mr	Rossevelt Midale School	4471		Conference Rm	6	6	0.055	0.022	X4, 2-Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	2,500	0.33	0.13	0.20	825	330	495
Roosevelt Schools NY	Rosevevel Midale School	4481		Halway	4	4	0.0710	0.0350	2-Lamp 40 Biax	LED Retrofit Panel $\mathrm{Kt,2}$ 2x2, NLO	3,000	0.28	0.14	0.14	852	420	432
Roosevelt Schools Mr	Rossevelt Midale School	4491		Halway	1	1			Exit Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools NY	Rosevelt Midalle School	4501		Hallway	3	3	0.0720	0.030	PL (2) 32W	LED Retrofit Can Kit, 6 hnch, HLO	3,000	0.22	0.04	0.18	648	117	531
Roosevelt Schools NY	Rosevevet Midalle School	4511		Storage	1	1	0.0550	0.0220	2x4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Rosesvelt Midale School	452 1		Storage	12	12	0.0550	0.0220	x4, 2-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	750	0.66	0.26	0.40	495	198	297
Roosevelt Schools NY	Rosevelt Midalle School	4531		Storage	2	2			Exit Sign - Led	will Not be Retroft	8,760		-				
Roosevelt Schools NY	Rosevevel Midale School	4541		office	2	2	0.0550	0.0220	2x4, 2-Lamp T8	LEE int Diviver Lamps, (2) 4 Lamps	1,760	0.11	0.04	0.07	194	77	116
Roosevelt Schools NY	Rosesevel Mididle School	4551		Storage	2	2	0.0550	0.0220	x4, 2-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	66	26	40
Roosevelt Schools NY	Rosevelt Midalle School	4561		Womens Locker Room	1	1	0.0550	0.0220	$2 \times 4,2$-amp T8	LED int. Diver Lamps, (2) 4 Lamps	1,760	0.06	0.02	0.03	${ }^{97}$	39	58
Roosevelt Schools NY	Rosevevel Midale School	4571		Womens Locker Room	2	2	0.0130	0.0060	FL 13 w	LeD Lamp, ALLine, LLO	1,760	0.03	0.01	0.01	46	21	25
Roosevelt Schools Mr	Rosesevel Mididle School	4581		Womens Locker Room	1	1	0.0320	0.0160	1x2, 2--2amp T8	LED Int. Diviver Lamps, (2) 2 Lamps	1,760	0.03	0.02	0.02	56	28	28
Roosevelt Schools NY	Roseseet Midalle School	4591		Mens Locker Room	1	1	0.055	0.0220	2x4, --Lamp T8	LeD int. Diviver Lamps, (2) 4 Lamps	1,760	0.06	0.02	0.03	${ }_{97}$	39	58
Roosevelt Schools NY	Rosevevel Midde School	4601		Mens Locker Room	2	2	0.0130	0.0060	FL 13 w	LED Lamp, ALLine, LLO	1,760	0.03	0.01	0.01	46	21	25
Roosevelt Schools NY	Roseveret Midale School	4611		Mens Locker Room	1	1	0.0320	0.0160	x2, 2-Lamp T8	LED int Diviver Lamps, (2) 2 Lamps	1,760	0.03	0.02	0.02	${ }^{56}$	28	28
Roosevelt Schools NY	Roseseeth Midale School	4621		Kitchen	16	16	0.055	0.0220	1x4, -2-Lamp T8	LeD Int. Diviver Lamps, (2) 4 Lamps	1,280	0.88	0.35	0.53	1,126	451	676
Roosevelt Schools NY	Roosevet Midide School	4631		Kitchen Range Hood	4	4	0.055	0.0220	$1 \times 4,2$-Lamp ${ }^{\text {P8 }}$	LED Int. Diviver Lamps, (2) 4 Lamps	1,280	0.22	0.09	0.13	282	113	169

Roosevelt UFSD, NY
Exhibit D-5-1
ECM 1 - LED Lighting and Lighting Controls Upgrade
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { Qty } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Exising Descripion	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \mathrm{kW} \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total kWn Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools Nr	Rosevevel Midale School	$464{ }^{1}$		Ktichen	2	2			Exit Sign - Led	will Not be Retroft	8,760						
Soseveret Schools NY	Roosevelt Midale School	4651		office	1	1	.0550	. 0220	4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps	760	0.06	0.02	0.03	${ }_{97}$	39	58
Sosevelt Schools NY	Rossevelt Midale School	4661		Storage	2	2	0.0550	0.0220	-amp T8 $^{\text {d }}$	LED int. Diver Lamps, (2) 4 Lamps	600	0.11	0.04	0.07	66	26	40
Roosevelt Schools Mr	Rosevelt Mididle School	4671		sc	1	1	.0550	. 0222	x4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps	750	0.06	0.02	0.03	41	17	25
Rosesevel Schools NY	Roosevelt Midale School	4681		Wak-in	4	4	0.1170	0.050	к4, 2-Lamp t5 Ho	LED Int. Diviver Lamp, (2) 4 T5 Ho Lamps	750	0.47	0.20	0.27	${ }^{351}$	150	201
Roosevelt Schools NY	Rossevelt Midale School	4691		wa	2	2	0.0550	0.0220	1xa, -2-amp T8	LED int. Diver Lamps, (2) 4 Lamps	750	0.11	0.04	0.07	${ }^{83}$	33	50
Roosevelt Schools NY	Rossevelt Midalle School	4701		Sering Line	2	2	0.0550	0.0220	2xt, -2-amp T8	LED int. Diver Lamps, (2) 4 Lamps	1,600	0.11	0.04	0.07	176	70	106
Roosevelt Schools Nr	Roosevelt Midale School	4711		Sering Line	7	7	0.0550	0.0220	X4, 2-Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	1,600	39	0.15	0.23	616	246	370
Roosevelt Schools Mr	Roosevelt Midale School	4721		Sening Line	12	12	0.0600	0.0100	Inc 60w	LeD Lamp, ALine, , NLO	1,600	0.72	0.12	0.60	1,152	192	960
Roosevelt Schools NY	Roosevet Midale School	4731		Sering Line	2	2			Extit Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools NY	Rosesevel Mididle School	4741		Trash Room	2	2	0.0550	0.0220	X4, 2-Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	1,600	0.11	0.04	0.07	176	70	106
Roosevelt Schools NY	Roosevelt Midale School	4751		Cafeeria	16	16	0.020	0.0200	ED Fixture, 20w	will Not be Retroft	3,351	0.32	0.32		1,072	1,072	
Roosevelt Schools NY	Rosevevel Midale School	4761		Cafeeria	12	12	0.0620	0.0250	$1 \times 4,1-$ Lamp T5H	LED int. Driver Lamp, (1) 4 ' 5 Ho Lamp, H1	3,351	0.74	0.30	0.44	2,493	1,005	1,488
Roosevelt Schools NY	Rosesevel Mididle School	4771		Cafeereria	33	33	0360	0.0120	FPL 32w	LED Retrofit Can Kit, 8 hnch, NLO	3,351	1.19	0.40	0.79	3,981	1,327	2.654
Roosevelt Schools Mr	Rossevelt Midale School	4781		Cafeereia	6	6			Exit Sign - Led	will Not be Retroft	8,760		.		.		
Roosevelt Schools NY	Rosevevel Midale School	4791		Cafeeria	2	2	0.0400	0.0400	Sack vending Mactine	will Not be Retroft	8,760	0.08	0.08		701	701	
Roosevelt Schools Nr	Rossevelt Midale School	4801		fietera	1	1	0.3400	0.3400	Cold Dinin Vending Machine	will Not be Retroft	8,760	34	0.34		2,978	2.978	
Roosevelt Schools Mr	Rossevelt Midale School	4811		Restrom, Wom	5	5	0.0360	0.0090	Pl 32 w	LED Retrofit Can Kit, 6 nch, NLO	1,760	0.18	0.05	0.14	317	79	238
Roosevelt Schools NY	Rosevevet Midale School	4821		Restroom, Womens	7	7	0.0550	0.0220	1x4, -2-amp T8	LED lnt. Diviver Lamps, (2) 4 Lamps, XL	1,760	0.39	0.15	0.23	678	271	407
Roosevelt Schools Mr	Rossevelt Midale School	4831		Restroom, Womens	1	1	0.0450	0.0220	1x, 2--Lamp T8	LED int. Diviver Lamps, (2) $3^{\text {L Lamps, } \mathrm{XL}}$	1,760	. 05	0.02	0.02	${ }^{79}$	39	40
Roosevelt Schools NY	Rosevelt Midalle School	4841		Jc	1	1	0.0550	0.0220	1x4, -2-amp T8	LED int. Diver Lamps, (2) 4 Lamps	600	0.06	0.02	0.03	33	13	20
Roosevelt Schools NY	Rosevevet Midalle School	4851		Restrom, Mens	5	5	0.0360	0.0090	CF PL 32 w	LED Retrofit Can Kit, 6 nch, NLO	1,760	0.18	0.05	0.14	317	79	238
Roosevelt Schools NY	Roosevelt Midide School	4861		Restroom, Mens	7	7	0.0550	0.0220	X4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps, XL	1,760	0.39	0.15	0.23	678	271	407
Roosevelt Schools NY	Rosevelt Midalle School	4871		Restrom, Mens	1	1	0.0450	0.0220	1x3, 2-Lamp T8	LED Int. Divier Lamps, (2) $3^{\text {L Lamps, XL }}$	1,760	0.05	0.02	0.02	79	39	40
Roosevelt Schools NY	Rosevevel Midale School	4881		Halway	21	21	0.2900	0.1000	H250w	LED Walpack, Full Cutoff, 12000 Lumens	3,750	6.09	2.10	3.99	22,838	7.875	14,963
Roosevelt Schools NY	Rosesevel Mididle School	4891		Halway	17	17	0.0360	0.0120	F PL 32 w	LED Retrofit Can Kit, 8 nch, NLL	3,750	0.61	0.20	0.41	2,295	765	1,530
Roosevelt Schools NY	Rosevelt Midalle School	4901		Halway	5	5			Exit Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools NY	Roosevet Midale School	491 S		Staimel	10	10	0.0550	0.0220	1x4, -2-amp T8	LEED Int. Diver Lamps, (2) 4 Lamps	3,750	0.55	0.22	0.33	2,063	825	1,238
Roosevelt Schools NY	Rosesvelt Mididle School	492 s		Staimell	11	11	0.0550	0.022	1x4, --Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps, H1	3,750	0.61	0.24	0.36	2,269	908	1,361
Roosevelt Schools NY	Roseseet Midalle School			Staimel	1	1			Exit Sign - Led	will Not be Retoroft	8.760						
Roosevelt Schools NY	Rosevevel Midale School	494 Sw		Staimel	12	12	0.0550	0.0220	1x, 2-2-Lamp T8	LEE int Diviver Lamps, (2) 4 Lamps	3,750	0.66	0.26	0.40	2.475	990	1,485
Roosevelt Schools NY	Rossevelt Mididle School			Staimell	1	1			Exit Sign - Leo	will Not be Retroft	8,760						
Roosevelt Schools NY	Roseseeth Midale School	496		Staimel	6	6	0.0360	0.0120	FPL 32w	LED Retrofit Can Kiti, 8 nch, MLO	3,750	0.22	0.07	0.14	810	270	540
Roosevelt Schools NY	Roosevet Midale School	${ }_{497}$ S		Staimel	2	2			Exit Sign - Led	will Not be Retoroft	8,760						

Roosevelt UFSD, NY
Exhibit D-5-1
ECM 1- LED Lighting and Lighting Controls Upgrade
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { aty } \\ \hline \end{gathered}$	$\underset{\substack{\text { Proposed } \\ \text { aty }}}{ }$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ k w \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { Total Post } \\ & \mathrm{kW} \end{aligned}\right.$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	$\begin{aligned} & \text { Total kWh } \\ & \text { Pronosed } \end{aligned}$	Total kWh Saved
Roosevelt Schools NY	Roosevelt Midide School	498		Staimell	13	13	0.0550	0.0220	1x4, 2-Lamp ${ }^{\text {c }}$	LED Int. Diviver Lamps, (2) 4 Lamps	3,750	0.72	0.29	0.43	2.681	1,073	1.609
Roosevelt Schools NY	Roosevell Midale School	499	w	Saivel	8	8	0.0550	0.0220	4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps	3,750	0.44	0.18	0.26	, 650	660	990
Roosevelt Schools NY	Roosevelt Midide School	500	w	Stairell	1	1			Exit Sign - Led	will Not te Retroft	8,760		-				
Roosevelt Schools NY	Roosevelt Midide School	501		Staimell	12	12	0.0550	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	3,750	0.66	0.26	0.40	2.475	990	1.485
Roosevelt Schools NY	Roosevelt Midide School	502	w	taimel	1	1			Exit Sign - Led	will Not be Retofot	8,760						
Roosevelt Schools MY	Rosesevel Midide School	503		Foyer	5	5	0.0360	. 0120	32w	LED Retofotit an K Kit, 8 Inch, , NLO	3,750	18	0.06	0.12	675	225	450
Roosevelt Schools NY	Roosevet Midide School	504		Foyer	11	11	0.0360	0.0120	CF PL 32 w	LED Retroft Can Kit, 8 nch, NLO	3,750	0.40	0.13	0.26	1,485	495	990
Roosevelt Schools NY	Rosevelt Midide School	505		ation A	2	2	0.590	0.2000	(2) 250w	(2) LED Shoebox, 12,000 Lumens, Type IV W, PC, AM, GRY	, 380	18	0.40	78	. 168	752	416
Roosevelt Schools NY	Roosevelt Midale School	506		Location B	41	41	0.0560	0.0230	CFPL (2) 26 w	LED Wallack, Full Cutof, 3000 Lumens, PC, HC	4,380	2.30	0.94	1.35	10,056	4,130	5,926
Roosevell Schools NY	Roosevel Midide School	507		Location C	12	12	0.0560	0.0230	F PL (2) 26w	LED Wallpack, Full Cutoff, 3000 Lumens, PC, HC, BB WM30	4,380	0.67	0.28	0.40	2,943	1,209	1,734
Roosevelt Schools MY	Roosevelt Midide School	508		Location D	7	7	0.0600	0.0140	How	LeD Corm Cob Lamp, 2.000LM	380	0.42	. 10	${ }^{0.32}$	1840	429	1,410
Roosevelt Schools NY	Rosevelt Midale School	509		Location E	10	10	0.2900	0.1000 N	H250w	LED Shoebox, 12,000 Lumens, Type IV W, PC, AM, GRY	4,380	2.90	1.00	1.90	12,72	4,380	${ }_{8,32}$
Roosevelt Schools MY	Roosevelt Midide School	510		Location F	16	16	0.1300	0.0400	H 100w	LED Canopy, 4000 Lumens	4,380	2.08	0.64	1.44	9,110	2,803	6,307
Roosevelt Schools NY	Rosevelt Middle School	511		Location 6	4	4	0.2900	0.1000	250w	LED Shoebox, 12,000 Lumens, Type IV W, PC, AM, GRY	4,380	1.16	0.40	0.76	5,081	1,752	3,329
Roosevelt Schools MY	Rosesevel Midale School	512		Locaion H	2	2	0.0300	. 0300	LED Fixture, 30w	will Not be Retorfit	4,380	0.06	0.06		263	263	
Roosevelt Schools MY	Roosevelt Midide School	513		Location 1	2	2	0.1300	0.0400	H 100w	LED Walpack, 2000 Lumen, PC, Round, Eyelid	4,380	0.26	0.08	0.18	1,139	350	788
Roosevelt Schools MY	Rosesevel Midale School	514		New Layout	66	66			ew Layout	No Retroft	8,760						
Roosevell Schools NY	Roosevel Midale School	515		New Layout	2	2		0.0280	ew Layout	LED Wallpack, Forward Throw, 2000 Lumens, BB, MW30	4,380		0.06	(0.06)		245	${ }^{(245)}$
Roosevelt Schools NY	Uysses Byas Elementary School			Uutily Emr	1	1	0.0534	0.0250	1x, 2-2-amp T8	LED Standard Wrap, NLO, 1×4	600	0.05	0.03	0.03	32	15	17
Roosevelt Schools MY	Ulyses Byas Elementary School	2		Classroom 3008	15	15	0.0620	0.0250	4, 1-Lamp T5	LED Int. Diviver Lamp, (1) 4 45 Ho Lamp	1,152	0.93	0.38	${ }^{0.56}$	f,071	432	${ }_{63}$
Roosevelt Schools NY	Ulyses Syas Elementary School	3		Classroom 3007	15	15	0.0620	0.0250	1x4, 1-Lamp TSH	LED Int. Diviver Lamp, (1) 4 T 5 Ho Lamp	1,152	0.93	0.38	0.56	1.071	432	639
Roosevelt Schools NY	Ulyses Syas Elementary School	4		Classroom 3006	15	15	0.062	0.0250	1x4, 1-Lamp TSH	LED Int. Diviver Lamp, (1) 4 T 5 Ho Lamp	1,152	0.93	0.38	. 56	1.071	432	639
Roosevelt Schools NY	Uysses Byas Elementary School	5		Staff Restroom	1	1	0.0620	0.0250	X4, 1-Lamp T5	LED int. Diviver Lamp, (1) 4 ' 5 Ho Lamp	2.400	0.06	0.03	0.04	149	60	89
Roosevelt Schools NY	Ulyses Syas Elementary School	6		Classroom 3003	17	17	0.0620	0.0250	1x4, 1-Lamp T5H	LED Int. Diviver Lamp, (1) 4 ' 5 Ho Lamp	2,119	05	0.43	0.63	2,233	901	1,333
Roosevelt Schools MY	Uysses Eyas Elementary School	7		Classroom 3003b	1	1	0.0620	0.0250	1x4, 1-Lamp TSH	LED Int. Diviver Lamp, (1) 4 ' 5 Ho Lamp	1,152	0.06	0.03	. 04	71	29	43
Roosevelt Schools NY	Uysses Syas Elementary School	8		Telcom 3041	2	2	0.0534	0.0250	1x, 2--Lamp T8	LED Standard Wrap, NLo, 1x4, Jack Chain Mount	600	0.11	0.05	0.06	64	30	34
Roosevelt Schools NY	Ulyses Syas Elementary School	9		Electrical Room 3040	2	2	0.0534	0.0250	1x4, -2-amp T8	LED Standard Wrap, NLO, 1x4, Jack Chain Mount	600	0.11	0.05	0.06	64	30	34
Roosevelt Schools NY	Uysses Byas Elementary School	10		Classroom 3038	16	16	0.0620	0.0250	1x4, 1-Lamp T 5 H	LED Int. Diviver Lamp, (1) 4 ' 5 Ho Lamp	1,152	0.99	0.40	0.59	1.143	461	682
Roosevelt Schools NY	Ulyses Syas Elementary School	11		Batrroom, Women's	5	5	0.0534	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2,400	0.27	0.11	0.16	641	264	377
Roosevelt Schools NY	Uysses Byas Elementar School	12		Satroom, Women's	6	6	0.0280	0.0130	PPL 26w	LED Retroft Can Kit, 6 Inch, , NLO	2.400	0.17	0.08	0.09	403	187	216
Roosevelt Schools MY	Uysses Eyas Elementary School	13		Uulity Jc1	1	1	0.0534	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.05	0.02	0.03	32	13	19
Roosevelt Schools NY	Ulyses Byas Elementary School	14		Batrrom, Men's	5	5	0.0534	0.0220	1x, 2--Amp T8	LED int. Driver Lamps, (2) 4 Lamps	2,400	0.27	0.11	0.16	641	264	377
Roosevelt Schools NY	Uysses Byas Elementar School	15		Batroom, Mer's	6	6	0.0280	0.0130	FPL 26w	LED Retofotit an Kit, 6 nch, , NLO	2.400	0.17	0.08	0.09	403	187	216
Roosevelt Schools MY	Uysses Byas Elementar School	16		Bahroom, Men's	1		0.0371	0.0160	1x2 2-2-amp T8	LED int. Diviver Lamps, (2) 2^{2} Lamps, XL	2.400	0.03	0.02	0.02	76	38	38

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Buiding Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { Qty } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Dessripition	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{aligned} & \text { Total Post } \\ & \text { kW } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total kWn Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools NY	Ulyses Byas Elementary School	173		Classroom 3033	15	15	0.0620	0.0250	$1 \times 4,1-\mathrm{Lamp}$ T 5 H	LeD Int. Driver Lamp, (1) 4 ' 5 Ho Lamp	1,152	0.93	0.38	0.56	1.071	432	${ }_{639}$
Soseselt Schools NY	Ulyses S Byas Elementary School	183		Classroom 3032	15	15	0620	0.0250	K4, 1-Lamp T5	LED Int. Divier Lamp, (1) 4 T5 Ho Lamp	1,152	0.93	. 38	0.56	.071	432	639
Sosevelt Schools NY	Ulyses Byas Elementary School	193		Classroom 3031	15	15	0.0620	0.0250	-amp TSH	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	1,152	93	0.38	0.56	1,071	432	639
Roosevelt Schools NY	Ulyses Byas Elementary School	203		Classroom 3030	15	15	0.0620	0.0250	$1 \times 4 \times 1$ - -Lamp TSH	LeD Int. Driver Lamp, (1) 4 ' 5 Ho Lamp	1,152	0.93	0.38	0.56	1.071	432	639
Rosesevel Schools NY	Ulyses Byas Elementar School	213		Classroom 3029	17	17	0.0620	0.0250	K4, 1-Lamp T5	LED Int. Divier Lamp, (1) 4 T5 Ho Lamp	1,152	1.05	0.43	0.63	,214	490	725
Roosevelt Schools Mr	Ulyses Byas Elementary School	223		Classroom 3028	18	18	62	0.0250	1x4, 1-Lamp T5H	LED Int. Diviver Lamp, (1) 4 ' 5 Ho Lamp	1,152	12	0.45	0.67	1,286	518	767
Roosevelt Schools NY	Ulyses Byas Elementary School	23.3		Classroom 3027	17	17	0.0620	0.0250	x4, 1-Lamp T5	LED Int. Divier Lamp, (1) 4 T 5 Ho Lamp	1,152	1.05	0.43	0.63	214	490	725
Roosevelt Schools Nr	Ulyses Byas Elementar School	243		Classroom 3026	17	17	620	0.0250	X4, 1-Lamp T5	LED Int. Divier Lamp, (1) 4 T5 Ho Lamp	1,152	1.05	0.43	0.63	1214	490	725
Roosevelt Schools Mr	Ulyses Byas Elementary School	253		Classrom 3025	17	17	520	0.0250	4, 1-1amp T5	LeD Int. Driver Lamp, (1) 4 T5 Ho Lamp	1,152	05	0.43	0.63	1,214	490	725
Roosevelt Schools NY	Ulyses Byas Elementary School	263		Classroom 3024	17	17	0.0620	0.0250	$1 \times 4,1-\mathrm{Lamp}$ T5H	LED Int. Divier Lamp, (1) 4 T 5 Ho Lamp	1,152	${ }_{0} 05$	0.43	0.63	, 214	490	725
Roosevelt Schools NY	Ulyses S Byas Elementar School	$27 / 3$		Classroom 3023	8	8	0.0620	0.0250	$1 \times 4 \times$, 1 -Lamp T5H	LED Int. Divier Lamp, (1) 4 T5 Ho Lamp	1,152	0.50	0.20	0.30	571	230	341
Roosevelt Schools NY	Ulysses Byas Elementary School	28.3		Classroom 3021	16	16	0.0620	0.0250	Lamp TSH	LeD Int. Driver Lamp, (1) 4 ' 5 H Ho Lamp	1,152	0.99	0.40	0.59	, 143	461	682
Roosevelt Schools NY	Ulyses Syas Elementary School	293		Office 3020	3	3	0620	0.0250	1×4, 1-Lamp T5H	LED Int. Diviver Lamp, (1) 4 T 5 Ho Lamp	1,760	. 19	0.08	0.11	327	132	195
Roosevelt Schools NY	Ulyses Syas Elementar School	303		Office 3020	3	3	0.0620	0.0250	$1 \times 1 \times 4,1-$-amp T5H	LED Int. Divier Lamp, (1) 4 T 5 Ho Lamp	1,760	0.19	0.08	0.11	327	132	195
Roosevelt Schools Mr	Ulyses Byas Elementary School	313		Office 3019	2	2	0.0360	0.0090	PL 32W	LED Retrofit an Kit, 6 Inch, NLO	2,200	0.07	0.02	0.05	158	40	119
Roosevelt Schools NY	Ulyses Byas Elementary School	323		Office 3018	5	5	0.0620	0.0250	$1 \times 4,1$-Lamp TSH	LeD Int. Driver Lamp, (1) 4 ' 5 Ho Lamp	1,760	0.31	0.13	0.19	546	220	326
Roosevelt Schools Nr	Ulyses S Byas Elementary School	333		Classroom 3017	17	17	0.0620	0.0250	1×4, 1-Lamp T5H	LED Int. Divier Lamp, (1) 4 ' 5 H Ho Lamp	1,152	05	0.43	0.63	, 214	490	725
Roosevelt Schools Mr	Ulyses Byas Elementary School	343		Classroom 3016	17	17	0620	0.0250	K4, 1-Lamp T5	LED Int. Divier Lamp, (1) 4 T5 Ho Lamp	1,152	1.05	0.43	0.63	,214	490	725
Roosevelt Schools NY	Ulyses Byas Elementary School	353		Utilly 3015	6	6	0.0534	0.0250	1x4, -2-amp ${ }^{\text {d8 }}$	LED Standard Wrap, NLO, 1x4, Jack Chain Mount	600	0.32	0.15	0.17	192	90	102
Roosevelt Schools Mr	Ulyses Byas Elementary School	$36 / 3$		Uuilly 3014	12	12	. 534	0.0250	X4, 2-Lamp T8	LED Standard Wrap, NLO, 1x4, Jack Chain Mount	600	64	0.30	. 34	384	180	204
Roosevelt Schools Mr	Ulyses Byas Elementary School	373		Classroom 3010	23	23	0.0620	0.0250	$1 \times 1 \times 4$, -Lamp T5H	LeD Int. Driver Lamp, (1) 4 T 5 Ho Lamp	1,152	1.43	0.58	0.85	1,643	662	980
Roosevelt Schools NY	Ulysses Byas Elementary School	383		Classroom 3010	11	11	0.0600	0.010	Halogen 60 w	LED Lamp, RPAR30, NLO	1,600	0.66	0.12	0.54	1,056	194	862
Roosevelt Schools NY	Ulyses Byas Elementar School	393		Hallway H1 H1	58	58	0.0380	0.0145	x4, 1-Lamp TSE	LED Int. Diviver Lamp, (1) 4 T5 HE Lamp	3,000	2.20	0.84	1.36	6,612	2,523	4,089
Roosevelt Schools NY	Ulyses Byas Elementary School	403		Halway $\mathrm{H}_{1} \mathrm{H1}$	10	10	0.0380	0.0145	1x4, 1-Lamp TE, em	LED Int. Driver Lamp, (1) 4 ' 5 HEL Lamp	8,760	${ }_{0} .38$	0.15	0.24	3,329	1,270	2.059
Roosevelt Schools NY	Ulyses Byas Elementary School	413		Display H1	6	6	0.0400	0.0110	<3, 1-Lamp T12	LED Int. Driver Lamp, (1) $3^{\text {L Lamp }}$	000	0.24	0.07	0.17	720	198	52
Roosevelt Schools NY	Ulyses Byas Elementar School	423		Hallway H1	4	4			Exit Sign - Led	will Not be Retoroft	8,760						
Roosevelt Schools NY	Ulysses Byas Elementary School	433		Classroom 3033	15	15	0.0620	0.0250	1x4, 1-Lamp T5H	LeD Int. Divier Lamp, (1) 4 T 5 Ho Lamp	1,152	0.93	0.38	0.56	1.071	432	639
Roosevelt Schools NY	Ulysees Byas Elementary School	44.2		Utility 2013	2	2	0.0620	0.0250	$1 \times 1 \times 1.1$-Lamp TSH	LED Int. Diviver Lamp, (1) 4 T 5 Ho Lamp	600	12	0.05	0.07	74	30	44
Roosevelt Schools NY	Ulyses Byas Elementary School	452		Classroom 2012	21	21	0.0620	0.0250	$1 \times 4 \times 1$, -Lamp T5H	LED Int. Divier Lamp, (1) 4 ' 5 H Ho Lamp	1,152	1.30	0.53	0.78	1,500	605	895
Roosevelt Schools NY	Ulyses Byas Elementar School	$46 / 2$		Classroom 2011	13	13	0.0620	0.0250	X4, 1-1.amp T5H	LED Int. Driver Lamp, (1) 4 T 5 Ho Lamp	2,19	0.81	0.33	0.48	,708	689	. 019
Roosevelt Schools NY	Ulysees Byas Elementary School	472		Classroom 2011b	1	1	0.0620	0.0250	$1 \times 4,1$ - -Lamp TSH	LED Int. Diviver Lamp, (1) 4 T 5 Ho Lamp	1,600	0.06	0.03	0.04	99	40	59
Roosevelt Schools NY	Ulyses Byas Elementary School	48.2		Classroom 2009	15	15	0.062	0.0250	$1 \times 4 \times$, - -Lamp TSH	LeD Int. Driver Lamp, (1) 4 ' 5 H Ho Lamp	1,152	0.93	0.38	0.56	1.071	432	639
Roosevelt Schools NY	Ulyses Byas Elementar School	492		Classroom 2008	15	15	0.0620	0.0250	$1 \times 4 \times$, 1-Lamp T5H	LED Int. Diver Lamp, (1) 4 ' 5 H Ho Lamp	2,119	0.93	0.38	0.56	,971	795	176
Roosevelt Schools NY	Ulysees Byas Elementar School	502		Classroom 2008b			0.0620	0.0250	$1 \times 1 \times 4$, --Lamp T5H	LeD int. Divier Lamp, (1) 4 T 5 Ho Lamp	1,600	0.06	0.03	0.04	99	40	59

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Flor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Dessripition	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{aligned} & \text { Total Post } \\ & \text { kW } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total KWh Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools NY	Ulyses Byas Elementary School	512		Storage 2005	9	9	0.0620	0.0250	$1 \times 4,1-\mathrm{Lamp}$ T 5 H	LED Int. Diver Lamp, (1) 4 T5 Ho Lamp	600	0.56	0.23	0.33	335	${ }_{135}$	200
Sosevelt Schools NY	Ulyses S Byas Elementary School	522		Storage 2005d	6	6	620	0.0250	K4, 1-Lamp T5H	LED Int Diviver Lamp, (1) 4 T5 Ho Lamp	600	0.37	0.15	. 22	223	90	${ }_{13}$
Sosevelt Schools NY	Ulyses Byas Elementary School	532		Storage 2005b	1	1	0620	0.0250	-amp T5	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	600	0.06	0.03	0.04	${ }^{37}$	15	22
Roosevelt Schools NY	Ulyses Byas Elementary School	542		Office	3	3	0.0620	0.0250	$1 \times 4 \times 1$, -Lamp T 5 H	LED Int. Diver Lamp, (1) 4 T5 Ho Lamp	3,200	0.19	0.08	0.11	595	240	355
Rosesevel Schools NY	Ulyses Byas Elementar School	$55 / 2$		Libara 2001	35	35	0.0620	0.0250	K4, 1-Lamp T5	LED Int. Diver Lamp, (1) 4 ${ }^{\text {T } 5 \text { Ho Lamp, HI }}$	472	2.17	0.88	1.30	194	1288	1.906
Roosevelt Schools Mr	Ulyses Byas Elementary School	$56 / 2$		Libary 2001	10	10	0.0620	0.0250	--Lamp TSH	LED Int. Diviver Lamp, (1)4 45 to Lamp	1,472	62	0.25	. 37	913	368	545
Roosevelt Schools NY	Ulyses Byas Elementary School	572		Libary	11	11	0.0280	0.0090	CFPL 26w	LED Retrofit Can Kit, 6 nch, NLO	1.472	0.31	0.10	0.21	453	146	308
Roosevelt Schools Nr	Ulyses Byas Elementar School	582		Libara 2001	2	2			Exit Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools Mr	Ulyses Byas Elementary School	58.12		Library 2001	12	12	880	0130	CFPL 26w	LED Retrofit Can Kit 6 hnch, NLO	1,472	34	0.16	0.18	495	230	265
Roosevelt Schools NY	Ulyses Byas Elementary School	592		Uuilly 2048	2	2	0.0534	0.0250	4, 2-Lamp T8	LED Standard Wrap, NLo, 1x4, Jack Chain Mount	600	0.11	0.05	0.06	64	30	34
Roosevelt Schools NY	Ulyses Byas Elementar School	602		Uuilly 2048	2	2	0.054	0.0250	x4, 2-Lamp T8	LED Standard Wrap, NLo, 14x, Jack Chain Mount	600	0.11	0.05	0.06	${ }_{64}$	30	34
Roosevelt Schools Mr	Ulyses Byas Elementary School	612		Conference Rm 2024	5	5	0.0620	0.0250	Lamp TSH	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	760	0.31	0.13	0.19	546	220	326
Roosevelt Schools NY	Ulyses Syas Elementary School	622		Conference Rm 2024a	3	3	0.0620	0.0250	$1 \times 4,1$-Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	1,760	0.19	0.08	0.11	327	132	195
Roosevelt Schools NY	Ulyses Syas Elementar School	632		Conference Rm 2024b	3	3	0.0620	0.0250	$1 \times 4 \times 1$, -Lamp T5H	LED Int. Diviver Lamp, (1) 4 T 5 Ho Lamp	60	0.19	0.08	0.11	327	132	195
Roosevelt Schools Mr	Ulyses Byas Elementary School	642		Conference Rm 2024c	2	2	. 0620	0.0250	Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	1,760	0.12	0.05	0.07	218	88	130
Roosevelt Schools NY	Ulyses Byas Elementary School	652		Conference Rm 2024d	2	2	0.0620	0.0250	$1 \times 4,1$-Lamp T5H	LED Int Diviver Lamp, (1) 4 T5 Ho Lamp	1,760	0.12	0.05	0.07	218	88	130
Roosevelt Schools Nr	Ulyses S Byas Elementary School	662		Bathrom, Women's GR2	5	5	0.0534	0.022	x4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps	2.400	27	0.11	0.16	641	264	377
Roosevelt Schools Mr	Ulyses Byas Elementary School	672		Bathrom, Women's GR2	1	1	0.0377	. 0160	2, 2 -L-amp 78	LED Int. Diviver Lamps, (2) 2 Lamps	2,400	0.03	0.02	0.02	76	38	38
Roosevelt Schools NY	Ulyses Byas Elementary School	682		Batrroom, Women's	6	6	0.0280	0.0130	CF PL 26w	LED Retrofit Can Kit. 6 hnch, NLO	2,400	0.17	0.08	0.09	403	187	216
Roosevelt Schools Mr	Ulyses Byas Elementary School	692		Uuilly c 2	1	1	534	0.0250	X4, 2-Lamp T8	LED Standard Wrap, NLo, 1x4, Jack Chain Mount	600	0.05	0.03	0.03	32	15	17
Roosevelt Schools Mr	Ulyses Byas Elementary School	702		Bathrom, Mer's BR2	6	6	0.0280	130	PL 26w	LED Retrofit Can Kit. 6 hnch, NLO	2.400	17	0.08	0.09	03	187	216
Roosevelt Schools NY	Ulyses S Byas Elementary School	712		Bathroom, Mer's BR2	5	5	0.0534	0.0220	1x, 2-Lamp T8	LED Int. Driver Lamps, (2) 4 Lamps, XL	2.400	0.27	0.11	0.16	641	264	377
Roosevelt Schools NY	Ulyses S Byas Elementar School	722		Bathroom, Mers ${ }^{\text {er }}$ 2	1	1	0.0445	0.022	x3, 2 -Lamp T8	LED int. Diviver Lamps, (2) $3^{\text {L Lamps, XL }}$	00	0.04	0.02	0.02	107	53	54
Roosevelt Schools NY	Ulyses Byas Elementary School	732		Classroom 2037	15	15	0.0620	0.0250	$1 \times 1 \times 1$, -Lamp T5H	LED Int. Diviver Lamp, (1) 4 T 5 Ho Lamp	1,152	0.93	0.38	0.56	1,071	432	639
Roosevelt Schools NY	Ulysese Byas Elementary School	742		Classroom 2036	14	14	0.0620	0.0250	$1 \times 4,1$ - -Lamp T5H	LED Int. Diver Lamp, (1) 4 T5 Ho Lamp	1,152	0.87	0.35	0.52	1,000	403	597
Roosevelt Schools NY	Ulyses Byas Elementar School	75.2		Classroom 2035	15	15	0.0620	0.0250	$1 \times 1 \times 4,1-$-amp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	1,152	0.93	${ }_{0.38}$	0.56	1,071	432	639
Roosevelt Schools NY	Ulysses Byas Elementary School	762		Classroom 2034	15	15	0.0620	0.0250	$1 \times 4,1$ 1-Lamp T5H	LeD Int. Diver Lamp, (1) 4 T5 Ho Lamp	1,152	0.93	0.38	0.56	1,071	432	639
Roosevelt Schools NY	Ulyses Byas Elementary School	772		Classroom 2033	15	15	0.0620	0.0250	$1 \times 4 \times 1$, -Lamp T 5 H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	1,152	0.93	0.38	0.56	1,071	432	639
Roosevelt Schools NY	Ulyses Byas Elementary School	782		Classroom 2032	12	12	0.0620	0.0250	$1 \times 4 \times 1$, -Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	1,152	0.74	0.30	0.44	857	346	511
Roosevelt Schools NY	Ulysses Byas Elementary School	792		Storage 2030	2	2	0.0620	0.0250	$1 \times 4,1$ 1-Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	600	0.12	0.05	0.07	74	30	44
Roosevelt Schools NY	Ulyses Byas Elementary School	802		Classroom 2031	11	11	0.0620	0.0250	$1 \times 4 \times 1$, -Lamp TSH	LED Int. Diver Lamp, (1) 4 T 5 Ho Lamp	1,152	0.68	0.28	0.41	786	317	469
Roosevelt Schools NY	Ulyses Byas Elementary School	$8_{1} 12$		Office 2029	3	3	0.062	250	$1 \times 4 \times 1$, -Lamp TSH	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	3,200	0.19	0.08	0.11	595	240	355
Roosevelt Schools NY	Ulysses Byas Elementary School	822		Classroom 2020	6	6	0.0620	0.0250	$1 \times 4,1$ 1-Lamp T5H	LED Int. Divive Lamp, (1) 4 T5 Ho Lamp	1,152	0.37	0.15	0.22	429	173	256
Roosevelt Schools NY	Ulysees Byas Elementary School	${ }_{83} 2$		Classroom 2027	14	14	0.0620	0.0250	1x4, 1-Lamp TH	LeD Int Diviver Lamp, (1) 4 T5 Ho Lamp	2.119	0.87	0.35	0.52	1,839	742	1,99

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { Qty } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Dessripition	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{aligned} & \text { Total Post } \\ & \text { kW } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total kWn Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools NY	Ulyses Byas Elementary School	842		Classrom 2027b	2	2	0.0620	0.0250	$1 \times 4,1-\mathrm{Lamp}$ T 5 H	LED Int. Diver Lamp, (1) 4 T5 Ho Lamp	1,600	0.12	0.05	0.07	198	80	118
Soseselt Schools NY	Ulyses S Byas Elementary School	852		Classroom 2025	16	16	0620	0.0250	K4, 1-Lamp T5H	LED Int Diviver Lamp, (1) 4 T5 Ho Lamp	1,152	0.99	. 40	0.59	143	461	682
Sosevelt Schools NY	Ulyses Byas Elementary School	862		Office 2023	18	18	0.0620	0.0250	Tap T5	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	1,760	1.12	45	0.67	1,964	792	172
Roosevelt Schools Mr	Ulyses Byas Elementary School	872		Staff Restroom	1	1	0620	0.025	K4, 1-Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	704	0.06	0.03	0.04	44	18	26
Rosesevel Schools NY	Ulyses Byas Elementar School	882		Uuiliy C 3	2	2	0.0534	0.0250	4, 2-Lamp T8	LED Standard Wrap, NLL, 1 x4, Jack Chain Mount	600	0.11	0.05	0.06	64	30	34
Roosevelt Schools Mr	Ulyses Byas Elementary School	892		Storage 2018A	1	1	620	0.0250	1x4, --Lamp T5	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	600	06	0.03	0.04	37	15	22
Roosevelt Schools NY	Ulyses Byas Elementary School	902		Office 2019	2	2	.0620	0.0250	x4, 1-Lamp T5	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	1,760	0.12	0.05	0.07	218	88	130
Roosevelt Schools Nr	Ulyses Byas Elementar School	912		Classroom 2018	7	7	20	0.0250	$1 \times 4 \times 1.1$-Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	1,152	43	0.18	0.26	500	202	298
Roosevelt Schools Mr	Ulyses Byas Elementary School	922		assroom 2017	17	17	0.0620	0.0250	4, 1-1amp T5	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	2.119	05	0.43	0.63	2,233	901	, ,333
Roosevelt Schools NY	Ulyses Byas Elementary School	932		Classroom 2017b	1	1	0.0620	0.0250	$1 \times 4,1-\mathrm{Lamp}$ T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	1,600	. 06	0.03	0.04	99	40	59
Roosevelt Schools NY	Ulyses Byas Elementar School	942		Classroom 2015	17	17	0.0620	0.0250	$1 \times 4 \times$, 1 -Lamp T5H	LED Int Diviver Lamp, (1) 4 T5 Ho Lamp	1.52	05	0.43	0.63	1214	490	725
Roosevelt Schools NY	Ulyses Byas Elementary School	952		Classroom 2014a	6	6	0.0620	0.0250	Lamp TSH	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	1,152	${ }_{0} .37$	0.15	0.22	429	173	256
Roosevelt Schools NY	Ulyses Syas Elementary School	961		Storage 2014	7	7	0.0620	0.0250	$1 \times 4,1$-Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	600	0.43	0.18	0.26	260	105	155
Roosevelt Schools NY	Ulyses Syas Elementar School	972		Halways H2	72	72	0.0620	0.0250	$1 \times 4 \times 1$, -Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	000	46	1.80	2.66	1,392	5,400	7.992
Roosevelt Schools NY	Ulyses Byas Elemenary School	98.2		Hways H2	8	8	0.0280	0.0130	PL26w	LED Retrofit Can Kit, 6 nch, MLO	000	0.22	0.10	0.12	672	312	360
Roosevelt Schools NY	Ulyses Byas Elementary School	${ }_{99} 2$		Halway ${ }^{\text {H2 }}$	6	6			Exts Sign - Led	will Not be Retroft	8,760						
Roosevelt Schools Nr	Ulyses S Byas Elementary School	1001		Gym	22	22	0.2880	0.0870	PLL (8) 32 W	LED High Bay, 13 K Lumens, 2x, osf, wG, PM	2.500	34	1.91	4.42	5,840	, 785	11,055
Roosevelt Schools Mr	Ulyses Byas Elementary School	100.11		Gym	2	2	0.2880	0.0870	PL(8) 32w	LED High Bay, 13 K Lumens, 2x, osf, wG, PM	8.760	0.58	0.17	0.40	5,046	, 524	522
Roosevelt Schools NY	Ulyses Byas Elementary School	1011		Gym Storage	4	4	0.0534	0.0250	1x4, -2-amp ${ }^{\text {d8 }}$	LED Standard Wrap, NLO, 1×4	750	0.21	0.10	0.11	160	75	85
Roosevelt Schools Mr	Ulyses Byas Elementary School	1021		ege St	8	8	.0.034	0.0250	X4, 2-Lamp T8	Led Standard Wrap, MLo, 1 x4, Jack Chain Mount	1,080	43	0.20	0.23	461	216	245
Roosevelt Schools Mr	Ulyses Byas Elementary School	1031		Stage ST	3	3	0.0534	0.0220	1x4, -2-amp T8	LED lnt. Diviver Lamps, (2) 4 Lamps, H11	1,080	0.16	0.07	0.09	173	71	102
Roosevelt Schools NY	Ulyses S Byas Elementary School	1041		Gym Storage	2	2	0.0534	0.0250	1x, 2-Lamp T8	LeD Standard Wrap, NLO, 1x4	600	0.11	0.05	0.06	64	30	34
Roosevelt Schools NY	Ulyses Byas Elementar School	1051		J. Storage 1	4	4	0.0620	0.0250	X4, 1-Lamp TSH	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	600	25	0.10	0.15	149	60	89
Roosevelt Schools NY	Ulyses Byas Elementary School	1061		Jc Storage 2	3	3	0.0620	0.0250	$1 \times 1 \times 1$, -Lamp T5H	LED Int. Diviver Lamp, (1) 4 T 5 Ho Lamp	600	0.19	0.08	0.11	112	45	67
Roosevelt Schools NY	Ulyses Byas Elementary School	1071		Office 1016	2	2	0.0620	0.0250	$1 \times 4,1$ - -Lamp T5H	LED Int Diviver Lamp, (1) 4 T5 Ho Lamp	3,200	0.12	0.05	0.07	397	160	237
Roosevelt Schools NY	Ulyses Byas Elementar School	1081		Office 1017	2	2	0.0620	0.0250	$1 \times 1 \times 4,1-$-amp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	3,200	0.12	0.05	0.07	397	160	237
Roosevelt Schools NY	Ulyses Byas Elementary School	1091		Storage 1013	2	2	0.0534	0.0220	1x4, -- -amp T8	LED int. Diver Lamps, (2) 4 Lamps	600	0.11	0.04	0.06	64	26	38
Roosevelt Schools NY	Ulyses Byas Elementary School	1101		Walkin 1009	1	1	0.0534	0.0220		LED Int. Diviver Lamps, (2) 4 Lamps, XL	1,600	0.05	0.02	0.03	85	35	50
Roosevelt Schools NY	Ulyses Byas Elementary School	1111		Kithen 1009	9	9	0.1057	0.0440	2x, 4-Lamp T8	LED int. Divier Lamps, (4) 4 Lamps	1,280	0.95	0.40	0.56	1,218	507	711
Roosevelt Schools NY	Ulysses Byas Elementary School	1121		Kitchen 1009	6	6	0.0620	0.0250	$1 \times 4,1$ 1-Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	1,280	0.37	0.15	0.22	476	192	284
Roosevelt Schools NY	Ulyses Byas Elementary School	1131		Uutily ss	1	1	0.0534	0.0220	1x4, -2-amp T8	LEED int Diviver Lamps, (2) 4 Lamps	600	0.05	0.02	0.03	32	13	19
Roosevelt Schools NY	Ulyses Byas Elementary School	1141		Office 1010	2	2	0.0620	0.0250	$1 \times 4 \times 1$, -Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	3,200	0.12	0.05	0.07	397	160	237
Roosevelt Schools NY	Ulyses Byas Elementary School	1151		Ovenhood 1009	3	3	0.0534	0.022	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,600	0.16	0.07	0.09	256	106	151
Roosevelt Schools NY	Ulysees Byas Elementary School	1161		Cafeeria 1008	9	9	0.0620	0.0250	1x4, 1-Lamp TH	LeD Int Diviver Lamp, (1) 4 T5 Ho Lamp	5.725	0.56	0.23	0.33	3,195	1,288	1,90

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { Qty } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{aligned} & \text { Total Post } \\ & \text { kW } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total kWn Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools NY	Ulyses Byas Elementary School	1171		Cafeereri 1005	52	52	0.0620	0.0250	$1 \times 4,1-\mathrm{Lamp}$ T 5 H	LED Int. Diver Lamp, (1) 4 T 5 Ho Lamp	864	3.22	1.30	1.92	2,786	${ }^{1,123}$	1,662
Soseveret Schools NY	Ulyses S Byas Elementary School	1181		Cafeieria 1005	1	1			Exit Sign - Led	will Not be Retroft	8.760						
Sosevelt Schools NY	Ulyses Byas Elementary School	1191		Telcom 1071	2	2	${ }^{054}$	0.0250	amp	Led Standard Wrap, MLo, 1 x4, Jack Chain Mount	600	0.11	0.05	0.06	64	30	34
Roosevelt Schools NY	Ulyses Byas Elementary School	1201		Electical 1070	2	2	0.0534	0.0250	1x4, -2-amp ${ }^{\text {e }}$	LeD Standard Wrap, NLO, 1 x4, Jack Chain Mount	600	0.11	0.05	0.06	64	30	34
Roosevelt Schools Nr	Ulyses Byas Elementary School	1211		Storage 1063a	2	2	0.0534	0.0220	X4, 2-Lamp T8	LED int. Diver Lamps, (2) 4 Lamps	600	0.11	0.04	0.06	${ }^{64}$	26	38
Roosevelt Schools NY	Ulyses Byas Elementary School	1221		Office 1067	4	4	0620	0.0250	-Lamp T5	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	704	0.25	0.10	0.15	175	70	104
Roosevelt Schools NY	Ulyses Byas Elementary School	1231		Office 1066	4	4	0.0620	0.0250	$1 \times 4,1$-Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 TO Lamp	704	0.25	0.10	0.15	175	70	104
Roosevelt Schools Nr	Ulyses Byas Elementar School	1241		Toilet 1065	2	2	20	0.0250	X4, 1-Lamp T5	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	704	0.12	0.05	0.07	87	35	52
Sosevelt Schools NY	Ulyses Byas Elementary School	1251		Office 1063	4	4	0.0620	0.0250	4, 1-Lamp TSH	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	3,200	0.25	0.10	0.15	99	320	474
Roosevelt Schools NY	Ulyses Byas Elementary School	1261		Office 1063	3	3	0.0534	0.0220	1x4, 2-Lamp T8	LED int. Diviver Lamps, (2) 4 Lamps	3,200	0.16	0.07	0.09	513	211	301
Roosevelt Schools NY	Ulyses Byas Elementar School	1271		Classroom 1062	15	15	0.0620	0.0250	$1 \times 4 \times 1.1-\mathrm{Lamp}$ T5H	LED Int. Divier Lamp, (1) 4 T5 Ho Lamp	1,152	0.93	0.38	0.56	. 071	432	639
Roosevelt Schools Mr	Ulyses Byas Elementary School	1281		Classroom 1062	1	1	0.0620	0.0250	4, 1-1-amp T5	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	2,400	0.06	0.03	0.04	149	60	89
Roosevelt Schools NY	Ulyses Syas Elementary School	1291		Classroom 1060	15	15	0.0620	0.0250	$1 \times 4,1$-Lamp T5H	LED Int. Diver Lamp, (1) 4 T 5 Ho Lamp	1,152	0.93	0.38	0.56	1,071	432	639
Roosevelt Schools NY	Ulyses S Byas Elementar School	1301		Classroom 1059	15	15	0.0620	0.0250	$1 \times 1 \times 4,1-\mathrm{Lamp}$ T5H	LED Int. Diviver Lamp, (1) 4 T 5 Ho Lamp	1,152	0.93	${ }_{0.38}$	0.56	1,071	432	639
Roosevelt Schools Mr	Ulyses S Byas Elementay School	1311		Classroom 1059	1	1	0.0620	0.0250	4, 1-1amp T5	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	2,400	0.06	0.03	0.04	149	60	89
Roosevelt Schools NY	Ulysees Byas Elementary School	1321		Classroom 1057	15	15	0.0620	0.0250	$1 \times 4,1$-Lamp T5H	LED Int. Diver Lamp, (1) 4 T5 Ho Lamp	1,152	0.93	0.38	0.56	1,071	432	639
Roosevelt Schools Nr	Ulyses S Byas Elementay School	1331		Classroom 1055	15	15	0.0620	0.0250	1x4, 1-Lamp TSH	LED Int Diviver Lamp, (1) 4 T5 Ho Lamp	1,152	0.93	${ }_{0.38}$	0.56	1.071	432	639
Roosevelt Schools Mr	Ulyses S Byas Elementay School	1341		Classroom 1055	1	1	.0620	0.0250	x4, 1-Lamp T5	LED Int. Diviver Lamp, (1) 4 T5 7 Ho Lamp	2,400	0.06	0.03	0.04	149	60	89
Roosevelt Schools NY	Ulysees Byas Elementary School	1351		Classroom 1053	16	16	0.0620	0.0250	$1 \times 4 \times 1$, -Lamp T5H	LED Int. Diver Lamp, (1) 4 T 5 Ho Lamp	2.119	0.99	0.40	0.59	2,102	848	1,254
Roosevelt Schools Mr	Ulyses S Byas Elementay School	1361		Classroom 1053	1	1	0.0620	0.0250	x4, 1-Lamp T5	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	2,400	06	0.03	0.04	149	60	89
Roosevelt Schools Mr	Ulyses Byas Elementay School	${ }_{137} 1$		Classroom 1051	16	16	0.0620	0.0250	$1 \times 1 \times 1$, -Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	1,152	0.99	0.40	0.59	1,143	461	682
Roosevelt Schools NY	Ulyses Byas Elementary School	1381		Classroom 1050	17	17	0.0620	0.0250	$1 \times 4,1$-Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 5 Ho Lamp	1,152	1.05	0.43	0.63	1,214	490	725
Roosevelt Schools NY	Ulyses Byas Elementar School	1391		Classroom 1050	1	1	0.0620	0.0250	X4, 1-Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	240	06	0.03	0.04	149	60	${ }^{89}$
Roosevelt Schools NY	Ulyses Byas Elementay School	1401		Classroom 1048	17	17	0.0620	0.0250	$1 \times 1 \times$, 1-Lamp T5H	LED Int. Divier Lamp, (1) 4 T5 5 Ho Lamp	1,152	1.05	0.43	0.63	1,214	490	725
Roosevelt Schools NY	Ulyses Byas Elementary School	1411		Classroom 1048	1	1	0.0620	0.0250	$1 \times 4,1$-Lamp T5H	LED Int. Diver Lamp, (1) 4 T 5 Ho Lamp	2,400	0.06	0.03	0.04	149	60	89
Roosevelt Schools NY	Ulyses Byas Elementar School	1421		Classroom 1046	17	17	0.0620	0.0250	$1 \times 1 \times 4,1-\mathrm{Lamp}$ T5H	LED Int. Diviver Lamp, (1)4 45 Ho Lamp	1,152	1.05	0.43	0.63	1,214	490	${ }^{725}$
Roosevelt Schools NY	Ulyses Byas Elementay School	1431		Classroom 1046	1	1	0.0620	0.0250	$1 \times 1 \times 1.1$-Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	2,400	0.06	0.03	0.04	149	60	89
Roosevelt Schools NY	Ulyses Syas Elementary School	1441		Office 1040	7	7	0.0620	0.0250	$1 \times 4,1$-Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	2,400	0.43	0.18	0.26	1,042	420	62
Roosevelt Schools Mr	Ulyses S Byas Elementar School	1451		Hallay 1040	2	2	0.0620	0.0250	$1 \times 4 \times 1.1$-amp T5H	LED Int. Diviver Lamp, (1) 4 T 5 Ho Lamp	3,000	0.12	0.05	0.07	372	150	222
Roosevelt Schools NY	Ulyses Syas Elementay School	1461		Office 1039	4	4	20	. 0250	$1 \times 1 \times 1,1-\mathrm{Lamp}$ T5H	LED Int. Diviver Lamp, (1) 4 T5 7 Ho Lamp	3,200	0.25	0.10	0.15	${ }^{794}$	320	474
Roosevelt Schools NY	Ulyses Syas Elementary School	1471		Office 1038	6	6	0.0620	0.0250	$1 \times 4,1$-Lamp TSH	LED Int. Diver Lamp, (1) 4 T 5 Ho Lamp	3,200	0.37	0.15	0.22	1,190	480	710
Roosevelt Schools NY	Ulyses Byas Elementay School	1481		Office 1037	4	4	0.0620	0.0250	1×4, 1-Lamp T5H	LED Int. Diviver Lamp, (1)4 45 Ho Lamp	3,200	25	0.10	0.15	94	320	474
Roosevelt Schools NY	Ulysses Byas Elementay School	1491		Office 1036	2	2	0.0620	0.0250	$1 \times 4,1$ 1-Lamp T5H	LED Int. Diviver Lamp, (1) 4 T5 Ho Lamp	3,200	0.12	0.05	0.07	397	160	237
Roosevelt Schools NY	Ulysees Byas Elementay School	1501		Staf Restroom Sr1			0.0620	0.0250	1x4, 1-Lamp TH	LeD Int Diviver Lamp, (1) 4 T5 Ho Lamp	3,200	0.06	0.03	0.04	198	80	118

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { Qty } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Dessripition	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{aligned} & \text { Total Post } \\ & \text { kW } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total kWn Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools NY	Ulyses Byas Elementary School	1511		Staff Restroom Si2	1	1	0.0620	0.0250	$1 \times 4,1-\mathrm{Lamp}$ T 5 H	LED Int. Diviver Lamp, (1) 4 ' 5 Ho Lamp	704	0.06	0.03	0.04	44	18	26
Soseveret Schools NY	Ulyses S Byas Elementary School	1521		Staff Restrom Sr	1	1	. 0620	250	x4, 1-Lamp T5H	LED Int. Divier Lamp, (1) 4 T 5 Ho Lamp	704	0.06	0.03	0.04	44	18	26
Sosevelt Schools NY	Ulyses Byas Elementary School	1531		Girs Locker Room	2	2	0.0620	0.0250	amp TSH	LED Int. Diviver Lamp, (1) 4 T 5 Ho Lamp	2,400	0.12	0.05	0.07	298	120	178
Roosevelt Schools NY	Ulyses Byas Elementary School	1541		Girs Locker Room	2	2	0.054	0.0220	1x4, -2-amp ${ }^{\text {es }}$	LED lnt. Diver Lamps, (2) 4 Lamps, XL	2,400	0.11	0.04	0.06	256	106	151
Rosesevel Schools NY	Ulyses Byas Elementar School	1551		Girs Locker Room	2	2	0.045	0.0220	3, 2 -Lamp T8	LED Int. Diver Lamps, (2) 3 ${ }^{3}$ Lamps, XL	2.400	0.09	0.04	0.05	214	06	108
Roosevelt Schools NY	Ulyses Byas Elementary School	1561		Girs Locker Room	4	4	so	0.0090	FPL 26 w	LED Retrofit Can Kit, 6 nch, MLO	2.400	11	0.04	0.08	269	86	182
Roosevelt Schools NY	Ulyses Byas Elementary School	1571		Boys Locker Room	2	2	0.0620	0.0250	$1 \times 4,1-\mathrm{Lamp}$ T5H	LED Int. Diviver Lamp, (1) 4 T 5 Ho Lamp	2,400	0.12	0.05	0.07	298	120	178
Roosevelt Schools Nr	Ulyses Byas Elementar School	1581		Boys Locker Room	2	2	0.534	0.0220	1xt, -2-amp T8	LED Int. Diver Lamps, (2) 4 4 Lamps, XL	2.400	11	0.04	0.06	256	106	151
Roosevelt Schools Mr	Ulyses Byas Elementary School	1591		Boys Locker Room	2	2	0.0445	0.022	3, 2-L-amp T8		2.400	0.09	0.04	0.05	214	106	108
Roosevelt Schools Mr	Ulyses Byas Elementary School	1601		Boys Locker Room	4	4	0.0280	0.0090	FPL 26w	LED Retroft Can Kit, 6 Inch, NLO	2.400	0.11	0.04	0.08	69	${ }^{86}$	182
Roosevelt Schools NY	Ulyses Byas Elementar School	1611		Uuiliy MR	12	12	0.0534	0.0250	x4, 2-Lamp T8	LED Standard Wrap, NLO, 1x4, Jack Chain Mount	600	. 64	0.30	${ }^{3} .4$	384	180	204
Roosevelt Schools Mr	Ulyses Byas Elementary School	1621		Storage 1005	2	2	0.0534	0.0220	4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	600	0.11	0.04	0.06	64	26	38
Roosevelt Schools NY	Ulyses Syas Elementary School	1631		Girs Room	2	2	0.054	0.0220		LED lnt. Diver Lamps, (2) 4 Lamps, XL	2,400	0.11	0.04	0.06	256	106	151
Roosevelt Schools NY	Ulyses S Byas Elementary School	1641		Girs Room	2	2	0045	0.0220	1x, 2--Lamp T8	LED Int. Diver Lamps, (2) 3 Lamss, XL	2.400	0.09	0.04	0.05	214	106	108
Roosevelt Schools Mr	Ulyses Byas Elementary School	1651		Girls Room	5	5	0.0280	0.0090	PL 26 w	LED Retrofit an Kit, 6 lnch, NLO	2.400	0.14	0.05	0.10	336	108	228
Roosevelt Schools NY	Ulysees Byas Elementay School	1661		Boys Room	2	2	0.054	0.0220	1x, 2--2mp T8	LED lnt. Diver Lamps, (2) 4 Lamps, XL	2,400	0.11	0.04	0.06	256	106	151
Roosevelt Schools Nr	Ulyses Byas Elementay School	1671		Boys Room	2	2	0.0445	0.0220	1x, 2--Lamp T8	LED Int. Diver Lamps, (2) 3 Lamps, XL	2.400	0.09	0.04	0.05	214	106	108
Roosevelt Schools Mr	Ulyses S Byas Elementay School	1681		Boys Room	5	5	0.0280	0.0090	PL 26 w	LED Retrofit an Kit, 6 Inch, NLO	2,400	0.14	0.05	. 10	336	108	228
Roosevelt Schools NY	Ulysees Byas Elementary School	1691		Halways H1	29	29	0.0620	0.0250	1×4, 1-Lamp T5H	LeD Int. Driver Lamp, (1) 4 ' 5 H H L Lamp	3,000	1.80	0.73	1.07	5,394	2,175	3,219
Roosevelt Schools Mr	Ulyses S Byas Elementay School	1701		Halways H1	5	5	0.0620	0.0250	K4, 1-Lamp TSH, EM	LED Int. Divier Lamp, (1) 4 T5 Ho Lamp	3,000	${ }_{0.31}$	0.13	0.19	930	375	555
Roosevelt Schools NY	Ulyses Byas Elementay School	1711		Hallways ${ }^{\text {H1 }}$	3	3			Exit Sign - Led	will Not be Retofoft	8,760				-		
Roosevelt Schools NY	Ulyses Byas Elementary School	1721		Loby	38	38	0.0620	0.0250	$1 \times 4,1$-Lamp T5H	LED Int. Divier Lamp, (1) 4 T 5 Ho Lamp	2,000	${ }_{2} .36$	0.95	1.41	4,712	1,900	2.812
Roosevelt Schools NY	Ulyses Byas Elementar School	1731		Loboy	8	8			Exit Sign - Led	will Not be Retoroft	8.760						
Roosevelt Schools NY	Ulyses Byas Elementay School	1741		Halways H2	26	26	0.0620	0.0250	$1 \times 4,1-$-amp T5H	LEED Int. Diviver Lamp, (1) 4 ' 5 Ho Lamp	3,000	1.61	0.65	0.96	4,836	1,950	2,886
Roosevelt Schools NY	Ulyses Byas Elementary School	1751		Halways H2	2	2			Exit Sign - Led	will	8,760						
Roosevelt Schools NY	Ulyses Byas Elementar School	1761		Halways н3	19	19	0.0620	0.0250	$1 \times 4 \times 1 .-\mathrm{Lamp}$ T5H	LED Int. Divier Lamp, (1) 4 ' 5 Ho Lamp	3,000	1.18	0.48	0.70	3,554	1,425	2.109
Roosevelt Schools NY	Ulyses Byas Elementay School	1771		Halways H3	2	2			Exit Sign - Led	will Not be Retofoft	8,760						
Roosevelt Schools NY	Ulyses Syas Elementary School	1781		Stairwels A	3	3	0.0620	0.0250	$1 \times 4,1-$ Lamp T5H	LED Int. Diviver Lamp, (1) 4 T 5 Ho Lamp	3,750	0.19	0.08	0.11	698	281	416
Roosevelt Schools Mr	Ulyses S Byas Elementar School	1791		Staimel/ A	3	3	0.0534	0.0220	1x4, --Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	3,750	0.16	0.07	0.09	601	248	353
Roosevelt Schools NY	Ulyses Syas Elementay School	1801		Staimel\| ${ }^{\text {B }}$	5	5	0.0620	0.0250	X4, 1-Lamp T5H	LED Int. Diviver Lamp, (1) 4 ' 5 Ho Lamp	3,750	0.31	0.13	0.19	, 163	469	694
Roosevelt Schools NY	Ulyses Syas Elementary School	1811		Staimel\| ${ }^{\text {B }}$	3	3	0.054	0.0220		LeD Int. Driver Lamps, (2) 4 Lamps	3,750	0.16	0.07	0.09	601	248	353
Roosevelt Schools NY	Ulyses Byas Elementay School	1821		Staimell C	3	3	0.0620	0.0250	$1 \times 4,1-$-amp T5H	LED Int. Divier Lamp, (1)4 45 Ho Lamp	50	0.19	0.08	0.11	698	281	416
Roosevelt Schools NY	Ulysses Byas Elementay School	1831		Staimelc	3	3	0.053	0.0220	X4, 2-Lamp T8	LED Int. Driver Lamps, (2) 4 Lamps	3,750	0.16	0.07	0.09	601	248	353
Roosevelt Schools NY	Ulyses Byas Elementay School	184 E		Wall Packs M	16	16	0.090	0.040	H70w	LED Wallpack, Full Cuutff, 4000 Lumens, PH	4,380	1.44	0.64	0.80	6,307	2.803	3,50

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { Qty } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Description	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{aligned} & \text { Total Post } \\ & \text { kW } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total kWn Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools NY	Ulysses Byas Elementary School	188 Ex		Wall Packs Mn1	9	9	0.0900	0.0230	мH70w	LED Wallpack, Full Cutoff, 300 Lumens, PC, HC	4,380	0.81	0.21	0.60	3,548	907	2,641
Soseselt Schools NY	Ulysses Byas Elementary School	187 Ex		Wak Way Poles P	8	8	0.0500	. 0500	K4, 1-Lamp T12, H0	will Not be Retroft	4,380	0.40	0.40		.752	, ,752	
Sosevelt Schools	Ulysses Byas Elementary School	188 Ex		Ot Poles P2	2	2	0.4600	0.1000	MH 400w	LED Shoebox, 12,000 Lumens, Type INW, PC, AM	4,380	92	0.20	0.72	4,030	876	3,154
Roosevelt Schools NY	Ulyseses Byas Elementary School	$189 \mathrm{Ex}^{1}$		Sign Flood S	1	1	0.4600	0.1200	MH 400w	LED Flood Light $\sim 15,000$ Lumens, Yoke Mount, PC мм	4,380	0.46	0.12	0.34	2.015	${ }_{5} 5$	1,889
Roseselt Schools NY	Uysses Byas Elementary School	1901		ew Layut	53	53			New Layout	O Rerofot	8,760						
Roosevelt Schools NY	Ulyseses Byas Elementary School	1910		New Layout	4	4			Layo	No Retofoft	4,380		-				
Roosevelt Schools NY	Wastingtor-Rose Elementary School	184 Et		Exereior Wall Packs M	24	24	0.0900	0.0230	H70w	LED Wallpack, Full Cutoff, 3000 Lumens, PC, HC	4,380	2.16	0.55	1.61	9,461	2.418	7.043
Roseselt Schools NY	Wastingtor-Rose Elementar School	185 Ex		Egress Doors No Emergency Lighting NI	15	15		0.0280	wewayut	LED Wallpack, Forward Throw, 2000 Lumens, BB, MW30	30		0.42	(0.42)		13	(13)
Osevelt Schools NY	Washington-Rose Elementar School	188 Ex		Canopy Recessed C1	21	21	0.0720	0.0400	PL (2) 32n	LED Canopy, 2000 Lumens, Surface Mount, MM	4,380	51	0.84	0.67	6,623	3.679	2,943
Roosevelt Schools NY	Wastingtor-Rose Elementary School	187 Es		Canopy Recessed C2	26	26	0.0360	0.0200	CF PL 32w	LED Canopy, 2000 Lumens, MM, xL	4,380	0.94	0.52	0.42	4,100	2.278	1,822
Roosevelt Schools NY	Wastington-Rose Elementar School	188 Ex		Recossed Canopy Trofers 53	8	8	0.0850	0.0290	$1 \times 3,2-\mathrm{Lamp}$ T5H	LED Int. Diviver Lamp, (2) 3 T ${ }^{\text {T } 5 \text { Ho Lamps }}$	4,380	${ }^{68}$	0.23	0.45	2.978	1,016	, ,962
Roosevelt Schools NY	Washington-Rose Elementar School	189 Ex		Parking Lot Poles P	3	3	0.4600	0.1000	MH 400w	LED Shoebox, 12,000 Lumens, Type IVW, PC, AM	4,380	1.38	0.30	1.08	6,044	1,314	4,730
Roosevelt Schools NY	Wastington-Rose Elementary School	$190 \mathrm{E}_{1}$		Sign Upights s	2	2	0.0900	0.0300	H70w	LED Flood Light -3,000 Lumens, Photocell, Yk	4,380	0.18	0.06	0.12	788	263	526
Roosevelt Schools NY	Wastington-Rose Elementar School	191 Ex		In Ground Flag Lights F	3	3	0.0900	0.0900	70w	will Not be Retroft	4,380	0.27	0.27		1,183	1,183	
Roosevelt Schools Mr	Wastington-Rose Elementary School	1923		Classroom 3007	10	10	0.0310	0.0220	ED Fixture, 1424 BR	LEED Int. Diviver Lamps, (2) 4 Lamps, xxL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools NY	Wastington-Rose Elementary School	1933		Classroom 3007	1	1	0.0632	0.0280	x2, 4-Lamp 78	LEE int Divier Lamps, (4) $2^{\text {L Lamps }}$	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools Nr	Wastington-Rose Elementary School	1943		Classroom 3007b Bathroom	2	2	0.0632	0.0280	2x, 4-Lamp T8	LED int. Divier Lamps, (4) 2 Lamps	2,400	. 13	0.06	0.07	303	134	169
Roosevelt Schools Mr	Wastington-Rose Elementary School	1953		Classroom 3007	2	2	0.0310	. 0220	ED Fixture, 1424 BR	LED int. Divier Lamps, (2) 4 Lamps, XXL	1,152	0.06	0.04	0.02	71	51	21
Roosevelt Schools NY	Wastingtor-Rose Elementary School	1963		Office 3011	6	6	0.0710	0.0350	2x2, -2-amp 40 Biax	LED Retroft Panel $\mathrm{Kt,2} \mathrm{\times 2}$ 2 , NLO	2,200	0.43	0.21	0.22	937	462	475
Roosevelt Schools Mr	Wastington-Rose Elementary School	1973		Classroom 3012	10	10	0.0310	0.022	LED Fixtre, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XxL	1,152	0.31	0.22	0.09	${ }^{357}$	253	104
Roosevelt Schools Mr	Wastington-Rose Elementary School	1983		Classroom 3012	1	1	0.0632	0.0280	$2 \times 2,4$ - 2 amp T8	LED int. Diver Lamps, (4) $2^{\text {L Lamps }}$	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools NY	Wastington-Rose Elementary School	1993		Uuily El 2	1	1	0.0534	0.022	1xt, -2-amp T8	LED int. Diviver Lamps, (2) 4 Lamps	750	0.05	0.02	0.03	${ }^{40}$	17	24
Roosevelt Schools NY	Wastington-Rose Elementar School	2003		Classroom 3014	15	15	0.0310	0.0220	LED Fixture, 14248 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	1,152	0.47	0.33	0.14	536	380	156
Roosevelt Schools NY	Wastington-Rose Elementary School	2013		Classroom 3014	2	2	0.0632	0.0280	2x, 4-Lamp T8	LED int. Diver Lamps, (4) $2^{\text {L Lamps }}$	1,152	0.13	0.06	0.07	${ }^{146}$	65	81
Roosevelt Schools NY	Wastington-Rose Elementary School	2023		Bathrom, Mer's	9	9	0.056	0.0170	CF PL (2) 26w	LED Retrofit Can Kit. 8 hnch, HLO	2,400	0.50	0.15	0.35	1,210	367	842
Roosevelt Schools NY	Wastington-Rose Elementar School	2033		Batrrom, Mer's	1	1	0.0534	0.0220	x4, 2-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	400	0.05	0.02	0.03	${ }_{128}$	53	75
Roosevelt Schools NY	Wastington-Rose Elementary School	2043		Uuility c 1	2	2	0.0534	0.0220	1xa, 2-Lamp T8	LED int. Diver Lamps, (2) 4 Lamps	750	0.11	0.04	0.06	8^{80}	33	47
Roosevelt Schools NY	Wastington-Rose Elementary School	2053		Batrroom, women's Gr1	9	9	0.0560	0.0170	CFPL (2) 26w	LED Retrofit Can Kkt, 8 nch, HLO	2,400	0.50	0.15	0.35	1,210	367	842
Roosevelt Schools Mr	Wastington-Rose Elementar School	2063		Batrrom, Women's Gr1	1	1	0.0310	0.0460	LED Fixture, 1424 8R	LED Vanit, NLo, 1×4	2.400	0.03	0.05	(0.02)	${ }^{74}$	110	(36)
Roosevelt Schools NY	Wastingotor-Rose Elementary School	$207 / 3$		Faciliy Room 3019	8	8	310	0.022	ED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, xxL	1,152	0.25	0.18	0.07	${ }^{286}$	203	83
Roosevelt Schools NY	Wastington-Rose Elementary School	2083		Facility Room 3019	1	1	0.0632	0.0280	$2 \times 2,4$-Lamp T8	LEED int Diviver Lamps, (4) 2 L Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools NY	Wastingotor-Rose Elementary School	2093		Facilit Room 3019b	1	1	0.0632	0.0280	2x, 4-Lamp T8	LED int. Divier Lamps, (4) $2^{\text {L Lamps }}$	200	0.06	0.03	0.04	152	67	84
Roosevelt Schools NY	Wastington-Rose Elementary School	2103		Facilit Room 3019c	1		0.0710	0.0350	2x2, 2-Lamp 40 Biax	LED Retroftit Panel $\mathrm{Kt,2} \mathrm{\times 2}$ 22, NLO	3,000	0.07	0.04	0.04	213	105	108
Roosevelt Schools NY	Wastington-Rose Elementary School	2113		Facility Room 3019a			0.0710	0.0350	2x2, 2-Lamp 40 Biax	LED Retroftit Panel $\mathrm{Kt,2} \mathrm{\times 2}$ 2 ${ }^{\text {a }}$ NLO	3,000	0.07	04	0.04	213	105	108

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Flor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{aligned} & \text { Proposed } \\ & \text { Qty } \end{aligned}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \mathrm{kN} \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	Total kWh Prooosed	$\begin{gathered} \text { Total kWh } \\ \text { Saved } \end{gathered}$
Roosevelt Schools NY	Wastington-Rose Elementary School	2123		Office 3020	4	4	0.0710	0.0350	2×2 2--Lamp 40 Biax	LED Retroft Panel Kit, 2x, NLO	1,152	0.28	0.14	0.14	${ }_{327}$	161	166
Roosevelt Schools Nr	Washington-Rose Elementary School	2133		Classroom 3022	10	10	310	0.0220	ED Fixute, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	1,152	0.31	b. 22	0.09	357	253	104
Soseltt Schools NY	Washington-Rose Elementary School	2143		Classroom 3025	1	1	0.020	0.0200	LED Fixture, 20 N	will Not be Retorft	1,152	0.02	0.02		23	23	
Roosevelt Schools NY	Wastington-Rose Elementary School	2153		Classroom 3025	3	3	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.09	0.07	0.03	107	76	31
Roosevelt Schools NY	Washington-Rose Elementary School	2163		Classroom 3025	1	1	0.0632	0.0280	22, 4 -Lamp T8	LED int. Driver Lamps, (4) 2 Lamps	2.400	0.06	0.03	0.04	152	${ }^{67}$	84
Roosevelt Schools MY	Washington-Rose Elementary School	2173		Classroom 3026	1	1	0.020	0.0200	LED Fixtre, 20 W	will Not be Retofoft	1,152	0.02	0.02		${ }^{23}$	23	
Roosevelt Schools MY	Washington-Rose Elementary School	2183		Classroom 3026	10	10	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XxL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools MY	Washington-Rose Elementary School	2193		Classroom 3026	1	1	0.0632	0280	22, 4 -Lamp T8	LED int. Divier Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools NY	Washington-Rose Elementary School	2203		assroom 3025	3	3	0.0310	0.0220	xutre, 1424 BR	LED Int. Divier Lamps, (2) 4 Lamps	1,152	0.09	0.07	0.03	107	76	31
Roosevelt Schools NY	Washington-Rose Elementary School	2213		Classroom 3027	1	1	0.020	. 0200	LED Fixture, 20 W	will Not be Retoroft	1,152	0.02	0.02		23	23	
Roosevelt Schools MY	Washington-Rose Elementary School	2223		Classroom 3027	3	3	0.0310	0.0220	LED Fixture, 1424 BR	LED int. Diviver Lamps, (2) 4 Lamps	1,152	0.09	0.07	0.03	107	76	31
Roosevelt Schools NY	Washington-Rose Elementary School	2233		Classroom 3027	10	10	0.0310	. 02220	ED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools MY	Wastington-Rose Elementary School	2243		Classroom 3027	1	1	0.0632	0.0280	$2 \times 2,4$-Lamp T8	LED Int. Diviver Lamps, (4) ${ }^{\text {L Lamps }}$	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools MY	Washington-Rose Elementary School	2253		Classroom 3028	1	1	0.020	0.0200	LED Fixure, 20w	will Not be Retorfit	1,152	0.02	0.02		23	23	
Roosevelt Schools MY	Washington-Rose Elementary School	2263		Classroom 3028	3	3	0.0310	0.020	ED Fixture, 1424 BR	LED int. Diviver Lamps, (2) 4 Lamps	1,152	0.09	0.07	0.03	107	76	31
Roosevelt Schools MY	Wastington-Rose Elementary School	$227 / 3$		Classroom 3028	10	10	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XxL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools MY	Washington-Rose Elementary School	2283		Classroom 3028	1	1	0.0632	0.0280	$2 \times 2,4$-amp T8	LED int. Driver Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools MY	Washington-Rose Elementary School	2293		Classroom 3029	1	1	0.020	0.0200	ED Fixture, 20W	will Not be Retorfit	1,152	0.02	0.02		23	23	
Roosevelt Schools MY	Wastington-Rose Elementary School	2303		Classroom 3029	2	2	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.06	0.04	0.02	71	51	21
Roosevelt Schools MY	Washington-Rose Elementary school	2313		Classroom 3029	10	10	0.0310	0.022	LED Fixtre, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools NY	Washington-Rose Elementary School	2323		Classroom 3029	1	1	0.0632	0.0280	22, 4 -Lamp T8	LED Int. Divier Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools NY	Washington-Rose Elementary School	2333		Uuility 3030	2	2	0.0534	. 0220	1x4, 2--2mp T8	LED int. Driver Lamps, (2) 4 Lamps	750	0.11	0.04	0.06	80	33	47
Roosevelt Schools MY	Washington-Rose Elementary School	2343		Classroom 3032	10	10	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Divive Lamps, (2) 4 Lamps, XXL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools NY	Washington-Rose Elementary School	2353		Classroom 3032	4	4	0.0710	0.0350	$2 \times 2,2$-Lamp 40 Biax	LED Retroft Panel Kit, 2x, , Lo	1,600	0.28	0.14	0.14	454	24	230
Roosevelt Schools MY	Washington-Rose Elementary School	2363		Classroom 3023	8	8	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XxL	1,152	0.25	0.18	0.07	286	203	83
Roosevelt Schools MY	Washington-Rose Elementary School	2373		Classroom 3002	1	1	0.0200	0.020	LED Fixture, 20 W	will Not be Retoroft	1,152	0.02	0.02		23	${ }^{23}$	
Roosevelt Schools NY	Washington-Rose Elementary School	2383		Classroom 3002	2	2	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Divier Lamps, (2) 4 Lamps	1,152	0.06	0.04	0.02	71	51	21
Roosevelt Schools MY	Wastington-Rose Elementary School	2393		Classroom 3002	10	10	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools NY	Washington-Rose Elementary School	2403		Classroom 3002	2	2	0.0632	0.0280	2x2, 4-Lamp T8	LED Int. Divier Lamps, (4) ${ }^{2}$ Lamps	1,152	0.13	0.06	0.07	146	65	81
Roosevelt Schools MY	Washington-Rose Elementary school	2413		Classroom 3003	1	1	0.020	0.0200	ED Fixture, 20W	will Not be Retorfit	1,152	0.02	0.02		${ }^{23}$	23	
Roosevelt Schools NY	Wastington-Rose Elementary School	2423		Classroom 3003	3	3	0.0310	0.0220	LED Fixtre, 1424 8R	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.09	0.07	0.03	107	76	31
Roosevelt Schools NY	Washington-Rose Elementar School	2433		Classroom 3003	10	10	0.0310	0.02	LED Fixture, 1424 BR	LED Int. Driver Lamps, (2) 4 Lamps, XXL	1,152	0.31	0.22	. 09	357	253	104
Roosevelt Schools NY	Washington-Rose Elementary School	2443		Classroom 3003	1	1	0.0632	0.0280	$2 \times 2,4$-Lamp T8	LED Int. Diviver Lamps, (4) ${ }^{2}$ Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools NY	Wastington-Rose Elementary School	2453		Classroom 3004	1		0.0200	0.0200	LED Fixture, 20w	will Not be Retoroft	1,152	0.02	0.02		${ }^{23}$	${ }^{23}$	

Roosevelt UFSD, NY
Exhibit D-5-1
CCM 1 - LED Lighting and Lighting Controls Upgrade

Site Name	Building Name	Index	Floor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \mathrm{kN} \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	Total kwn Proposed	Total kWh
Roosevelt Schools NY	Washington-Rose Elementary School	2463		Classroom 3004	2	2	310	0.0220	D Fixture, 1424 8R	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.06	0.04	0.02	71	51	21
Roosevelt Schools Nr	Washington-Rose Elementary School	2473		Classroom 3004	10	10	0310	220	LED Fixture, 1424 BR	LED Int. Divier Lamps, (2) 4 Lamps, XXL	1,152	${ }^{0.31}$	b. 22	0.09	357	253	104
Sosevelt Schools NY	Washington-Rose Elementary School	2483		Classroom 3004	2	2	0.0632	280	mp	LED int. Driver Lamps, (4) 2 Lamps	1,152	0.13	0.06	0.07	146	65	81
Roosevelt Schools NY	Washington-Rose Elementary School	2493		Classroom 3005	1	1	0.020	0200	ED Fixture, 20W	will Not be Retoroft	1,152	0.02	0.02		23	23	
Roosevelt Schools NY	Washington-Rose Elementary School	2503		Classroom 3005	3	3	0.0310	0.0220	LED Fixture, 1424 BR	LED int. Diviver Lamps, (2) 4 Lamps	1,152	0.09	0.07	0.03	107	76	31
Roosevelt Schools MY	Washington-Rose Elementary School	2513		Classroom 3005	10	10	0.0310	0220	FFixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools NY	Washington-Rose Elementary School	2523		Classroom 3005	1	1	0632	0.0280	22, 4 -Lamp T8	LED Int. Divier Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools MY	Washington-Rose Elementary School	2533		Classroom 3006	1	1	0.020	0.020	LED Fixture, 20w	will Not be Retoroft	152	0.02	0.02		23	23	
Roosevelt Schools NY	Wastington-Rose Elementary School	2543		ssroom 3006	3	3	0.0310	0.0220	LED Fixtue, 14248 BR	LED nt. Diver Lamps, (2) 4 Lamps	1,152	0.09	0.07	0.03	107	76	31
Roosevelt Schools NY	Washington-Rose Elementary School	2553		Classroom 3006	10	10	0.0310	0.0220	ED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools MY	Washington-Rose Elementary School	2563		Classroom 3006	2	2	0.0632	0.0280	2x, 4-L-amp T8	LED int. Divier Lamps, (4) 2 Lamps	1,152	0.13	0.06	0.07	146	65	81
Roosevelt Schools NY	Washington-Rose Elementary School	2573		alway H +	5	5	0.0350	0.0350	ED Fixure, 35 W	will Not be Retorfit	2,400	0.18	0.18		420	420	
Roosevelt Schools NY	Washington-Rose Elementary School	2583		Hallway +1	3	3	0.0350	0.0350	LED Fixture, 35W	will Not be Retoroft	8,753	0.11	0.11		919	919	
Roosevelt Schools MY	Washington-Rose Elementary School	2593		Halway H1	10	10	0.0560	0.0170	CFPL (2) 26 w	LED Retrofit Can Kit. 8 nch, HLO	2.400	0.56	0.17	0.39	, 344	408	${ }_{936}$
Roosevelt Schools NY	Wastington-Rose Elementary School	$260 / 3$		Halway H1	2	2			No Retofoft	will Not te Reforfit	8,760						
Roosevelt Schools NY	Wastington-Rose Elementary School	2613		Hallway н2	22	22	0.0350	0.0350	LED Fixure, 35W	will Not be Retoroft	2,400	0.77	0.77		1.848	1,848	
Roosevelt Schools NY	Washington-Rose Elementary school	2623		Hallway H2	8	8	0.0350	0.0350	LED Fixture, 35W	will Not be Retorfit	8,753	0.28	0.28		2.451	2.451	
Roosevelt Schools MY	Washington-Rose Elementary School	2633		Halway $\mathrm{H}^{\text {2 }}$	10	10	0.0560	0.0170	PL(2) 26 w	LED Retrofit an K Kit, 8 Inch, , HLO	2.400	0.56	0.17	${ }^{0.39}$, ,344	408	${ }_{936}$
Roosevelt Schools NY	Wastington-Rose Elementary School	2643		Hallway н2	2	2			No Retorit	will Not be Retoroft	8,760						
Roosevelt Schools NY	Washington-Rose Elementary School	2653		Halway нз	4	4	0.0350	0.0350	LED Fixture, 35W	will Not be Reforfit	2.400	0.14	0.14		336	336	
Roosevelt Schools NY	Wastington-Rose Elementary School	2663		Halway ${ }^{\text {+ }}$	3	3	0.0350	0.0350	LED Fixture, 35W	will Not be Retofoft	8,753	0.11	0.11		919	919	
Roosevelt Schools NY	Washington-Rose Elementary School	2673		Halway н3	6	6	${ }^{0.05}$	0.0170	CF PL (2) 26w	LED Retrofit Can Kit, 8 Inch, , HLO	2.400	0.34	0.10	0.23	806	245	562
Roosevelt Schools NY	Washington-Rose Elementary School	2683		Halway H3	2	2			No Retofot	will Not be Rerofot	8,760						
Roosevelt Schools NY	Wastington-Rose Elementary School	2692		Classroom 2007	1	1	0.020	0200	LED Fixure, 20 W	will Not be Retofoft	1,152	0.02	0.02		23	23	
Roosevelt Schools MY	Washington-Rose Elementary School	2702		Classroom 2007	10	10	0.0310	0.022	LED Fixtre, 14248 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XxL	1,152	0.31	0.22	.09	357	253	104
Roosevelt Schools MY	Washington-Rose Elementary School	2712		Classroom 2007	2	2	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Divier Lamps, (2) 4 Lamps, XXL	1,152	0.06	0.04	0.02	71	51	21
Roosevelt Schools NY	Wastington-Rose Elementary School	272		Classroom 2007	1	1	0.0632	0.0280	2x2, 4-Lamp T8	LED nt. Diver Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools NY	Washington-Rose Elementary School	2732		Classroom 2007b Batrroom	1	1	0.0632	0.0280	2x2, 4-Lamp T8	LED Int. Diviver Lamps, (4) 2 Lamps	2,400	0.06	0.03	0.04	152	67	84
Roosevelt Schools MY	Washington-Rose Elementary School	2742		Office 2009	6	6	0.0710	0.0350	2x2, --Lamp 40 Biax	LED Retorfit Panel Kit, 2x, NLL	1,152	0.43	0.21	0.22	491	242	249
Roosevelt Schools NY	Wastington-Rose Elementary School	275		Classrom 2010	10	10	0.0310	0.0220	ED Fixture, 1424 BR	LED Mnt. Diver Lamps, (2) 4'Lamps, XXL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools NY	Wastington-Rose Elementary School	2762		Classroom 2010	1	1	0.0632	0.0280	2x2, 4-Lamp T8	LED nt. Diver Lamps, (4) ${ }^{2}$ Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools NY	Washington-Rose Elementar School	$277 / 2$		Classroom 2011	15	15	0.0310	0.02	LED Fixture, 1424 BR	LED Int. Driver Lamps, (2) 4 Lamps, XXL	1,152	0.47	0.33	14	536	380	156
Roosevelt Schools NY	Wastington-Rose Elementary School	2782		Classroom 2011	2	2	0.0632	0.0280	22, 4-Lamp T8	LED Int. Diver Lamps, (4) 2 Lamps	1,152	0.13	0.06	0.07	146	65	81
Roosevelt Schools MY	Washington-Rose Elementary School	2792		Batrrom, Men's BR2	9	9	0.0560	0.0130	CF PL (2) 26w	LED Retoroft Can Kit, 6 Inch, , NLO	2.400	0.50	0.12	${ }_{0} .39$	1.210	281	929

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Flor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	Total kwn Proposed	Total kWh
Roosevelt Schools NY	Wastington-Rose Elementary School	2802		Bathroom, Mer's BR2	1	1	0.0534	0.0220	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2,400	0.05	0.02	0.03	128	${ }_{53}$	75
Roosevelt Schools Nr	Washington-Rose Elementary School	2812		Uuilly 2013	2	2	. 0.534	0.020	x4, 2-Lamp 78	LED int. Diviver Lamps, (2) 4 Lamps	750	0.11	0.04	0.06	80	33	47
Soseltt Schools NY	Washington-Rose Elementary School	2822		Bathrom, Mer's GR2	9	9	0.056	0130	CF PL (2) 26w	LED Retrofit Can Kit, 6 ich, , NLO	2.400	0.50	0.12	0.39	1,210	281	929
Roosevelt Schools NY	Washington-Rose Elementary School	2832		Bathrom, Mer's GR2	1	1	0.0534	0.0220	4, 2 -Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	2,400	0.05	0.02	0.03	128	${ }_{53}$	75
Roosevelt Schools NY	Washington-Rose Elementary School	2842		Classroom 2016	10	10	0.0310	0.0220	ED Fixute, 1424 BR	LED Int. Divier Lamps, (2) 4 Lamps, XXL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools MY	Washington-Rose Elementary School	2852		Classroom 2016	1	1	0.0632	0.0280	$2 \times 2,4$-amp T8	LED Int. Diviver Lamps, (4) 2 Lamps	1,152	.06	0.03	0.04	73	32	41
Roosevelt Schools NY	Washington-Rose Elementary School	2862		Classroom 2016b Bathroom	1	1	0.0632	0.02	2, 4-4-amp T8	LED Int. Divier Lamps, (4) ${ }^{\text {L Lamps }}$	2,400	0.06	0.03	0.04	152	67	84
Roosevelt Schools MY	Washington-Rose Elementary School	2872		Office 2017	4	4	0.0710	0.0350	$2-\operatorname{tamp} 40$ Biax	LED Retorfit Panel Kit, 2x, NLL	, 152	0.28	0.14	0.14	327	161	166
Roosevelt Schools NY	Washington-Rose Elementary School	2882		Classroom 2020	1	1	0.020	0.0200	LED F Fixtue, 20 y	will Not be Retofoft	1,152	0.02	0.02		23	23	
Roosevelt Schools NY	Washington-Rose Elementary School	2892		Classroom 2020	3	3	0.0310	0.0220	ED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.09	0.07	0.03	107	76	31
Roosevelt Schools MY	Washington-Rose Elementary School	2902		Classroom 2020	10	10	0.0310	0.0220	LED Fixture, 1424 8R	LED Int. Divier Lamps, (2) 4 Lamps, XXL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools NY	Washington-Rose Elementary School	2912		Classroom 2020	1	1	0.0632	0.0280	4-Lamp T8	LED Int. Divier Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools NY	Washington-Rose Elementary School	292		Classroom 2021	1	1	0.0200	0.0200	LED Fixure, 20 W	will Not be Retoroft	1,152	0.02	0.02		23	23	
Roosevelt Schools MY	Wastington-Rose Elementary School	2932		Classroom 2021	3	3	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.09	0.07	0.03	107	76	31
Roosevelt Schools MY	Washington-Rose Elementary School	2942		Classroom 2021	10	10	0.0310	. 0220	DD Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools NY	Wastington-Rose Elementary School	2952		Classroom 2021	1	1	0.0632	0.0280	2x, 4-L-amp T8	LED Int. Diviver Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools MY	Washington-Rose Elementary School	2962		Classroom 2022	1	1	0.020	0.0200	LED Fixture, 20 W	will Not be Retoroft	1,152	0.02	0.02		23	23	
Roosevelt Schools MY	Washington-Rose Elementary School	2972		Classroom 2022	3	3	0.0310	220	ED Fixture, 1424 BR	LED int. Diviver Lamps, (2) 4 Lamps	1,152	0.09	0.07	0.03	107	76	31
Roosevelt Schools NY	Wastington-Rose Elementary School	2982		Classroom 2022	10	10	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools NY	Washington-Rose Elementary School	2992		Classroom 2022	1	1	0.0632	0.0280	2x, 4-Lamp T8	LED int. DiviverLamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools NY	Wastington-Rose Elementary School	3002		Classroom 2023	1	1	0.020	200	LED Fixture, 20W	will Not be Retofoft	1,152	0.02	0.02		23	23	
Roosevelt Schools NY	Washington-Rose Elementary School	3012		Classroom 2023	3	3	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Divier Lamps, (2) 4 Lamps	${ }^{1,152}$	0.09	0.07	0.03	107	76	31
Roosevelt Schools MY	Washington-Rose Elementary School	3022		Classroom 2023	10	10	0.0310	0.0220	LED Fixture, 1424 8R	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools NY	Washington-Rose Elementary School	3032		Classroom 2023	1	1	0.0632	0.0280	$2 \times 2,4$-Lamp T8	LED Int. Divier Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools MY	Washington-Rose Elementary School	3042		Library 2024	72	72	0.0620	. 0.040	LED Fixture, 14448 Br , DS	LED Int. Diviver Lamps, (4) 4 Lamps, DS, H1, XLL	1,840	4.46	3.17	1.30	8,214	5,829	2.385
Roosevelt Schools MY	Washington-Rose Elementary School	3052		Libary 2024	13	13	0.2350	0.1000	1x8, 4-Lamp T5H4	LED Int. Diviver Lamp, (4) 4 ${ }^{\text {c }}$ \% Ho Lamps, , H1	1.840	3.06	1.30	1.76	5.621	2.392	3,229
Roosevelt Schools NY	Washington-Rose Elementary School	3062		Library 2024	2	2	0.0632	0.0280	22, 4 -Lamp T8	LED int. Diver Lamps, (4) 2^{2} Lamps, H1	1,728	0.13	0.06	0.07	218	97	122
Roosevelt Schools NY	Washington-Rose Elementary School	3072		Library 2024	8	8	0.0500	0.0060	c 50w	LED Lamp, MR16, NLO, E26	1,840	0.40	0.05	0.35	736	88	648
Roosevelt Schools NY	Wastington-Rose Elementary School	3082		Libray 2024	4	4	0.0200	0.0200	LED Fixure, 20W	will Not be Retorft	1,840	0.08	0.08		147	147	
Roosevelt Schools NY	Wastington-Rose Elementary School	3092		Libaray 2024 Batrrom	2	2	0.0543	0.0210	2, 2-Lamp U T8	LED Int. Diver Lamps, (3) ' Lamps, 2x2 Kit	2.400	0.11	0.04	. 07	261	101	160
Roosevelt Schools NY	Wastington-Rose Elementary School	3102		Librar 2024a	2	2	0.0534	0.0220	1x4, --1amp T8	LED nt. Divier Lamps, (2) 4 Lamps	1,152	0.11	0.04	0.06	123	51	72
Roosevelt Schools NY	Washington-Rose Elementar School	3112		Libray 20240	2	2	0.0534	0.0220	1x4, 2-Lamp 8	LED Int. Driver Lamps, (2) 4 Lamps	1,152	0.11	0.04	0.06	123	51	72
Roosevelt Schools NY	Wastington-Rose Elementary School	3122		Uuility 2027	2	2	0.0534	0.0220	114, 2-Lamp T8	LED Int. Diver Lamps, (2) 4 L Lamps	750	0.11	0.04	0.06	80	33	47
Roosevelt Schools NY	Washington-Rose Elementary School	3132		Uuility 2028 Electrical	1		0.0534	0.02201	1x4, 2-Lamp 8	LED Int. Diviver Lamps, (2) 4 Lamps	750	5	0.02	${ }^{0.03}$	40	17	24

Roosevelt UFSD, NY
Exhibit D-5-1
CCM 1 - LED Lighting and Lighting Controls Upgrade

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { Qty } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Exising Descripion	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \mathrm{kW} \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total KWh Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools NY	Washington-Rose Elementary School	3142		Classroom 2029	1	1	0.0200	0.0200	LED Fixure, 20 W	will Not be Retroft	1,152	0.02	0.02		23	23	
Sosevelt Schools NY	Wastingon-Rose Elementary School	3152		Classroom 2029	2	2	0310	0.0220	LED Fixture, 1424 BR	LED int. Diviver Lamps, (2) 4 Lamps	1,152	0.06	0.04	0.02	71	51	21
Sosevelt Schools NY	Wastington-Rose Elementary School	3162		Classroom 2029	10	10	0.0310	0.0220	LED Fixtre, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	1,152	0.31	0.22	0.09	${ }^{357}$	253	104
Roosevelt Schools NY	Washington-Rose Elementary School	3172		Classroom 2029	1	1	0.0632	0.0280	$2 \times 2,4$-Lamp ${ }^{\text {d8 }}$	LEED Int. Diver Lamps, (4) 2 'Lamps	1,152	0.06	0.03	0.04	73	32	41
Rosesevel Schools NY	Wastingon-Rose Elementary School	3182		Storage 2030	2	2	0.0543	0.0210	2×2.2-Lamp U 8	LED Int. Diviver Lamps, (3) 2^{2} Lamps, $2 \times 2 \mathrm{Kit}$	750	0.11	0.04	0.07	${ }^{81}$	32	50
Roosevelt Schools NY	Wastington-Rose Elementary School	3192		Classroom 2032	10	10	0.0310	0.0220	LED Fixtre, 14248 BR	LED int. Diviver Lamps, (2) 4 Lamps, XXL	1,152	31	0.22	0.09	${ }^{357}$	253	104
Roosevelt Schools NY	Washington-Rose Elementary School	3202		Classroom 2032	1	1	0.0632	0.0280	2x, 4-Lamp T8	LED int Diviver Lamps, (4) ${ }^{\text {L Lamps }}$	1,152	0.06	0.03	0.04	${ }_{7}$	32	41
Roosevelt Schools Nr	Wastingon-Rose Elementary School	3213		Storage 2031	6	6	0.0710	0.0350	2x, 2--Lamp 40 Biax	LED Retrofit Panel Kit, 2x, nLo	1.440	43	0.21	0.22	613	302	311
Sosevelt Schools NY	Washington-Rose Elementary School	3222		Classroom 2002	1	1	0.0200	0.0200	ED Fixure, 20 W	will Not be Retroft	1,152	0.02	0.02		23	23	
Roosevelt Schools NY	Washington-Rose Elementary School	3232		Classroom 2002	2	2	0.0310	0.0220	LED Fixure, 1424 BR	LED int. Diviver Lamps, (2) 4 Lamps	1,152	0.06	0.04	0.02	${ }^{71}$	51	21
Roosevelt Schools NY	Wastingon-Rose Elementary School	3242		Classroom 2002	10	10	3310	0.0220	LED Fixture, 1424 8R	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	1,152	31	0.22	0.09	357	253	104
Roosevelt Schools Mr	Washington-Rose Elementary School	3252		Classroom 2002	2	2	0.0632	0.0280	x2, 4-L-amp T8	LED int. Diver Lamps, (4) 2 Lamps	1,152	0.13	0.06	0.07	146	65	${ }^{81}$
Roosevelt Schools Mr	Wastington-Rose Elementary School	3262		Classroom 2003	1	1	0.0200	0.0200	LED Fixure, 20 W	will Not be Retroft	1,152	0.02	0.02		23	23	
Roosevelt Schools NY	Wastingon-Rose Elementary School	$327 / 2$		Classroom 2003	3	3	0.0310	0.0220	LED Fixture, 1424 BR	LED int. Divier Lamps, (2) 4 Lamps	1,152	0.09	0.07	0.03	107	76	31
Roosevelt Schools Nr	Wastington-Rose Elementary School	3282		Classroom 2003	10	10	0.0310	0.022	ED Fixure, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, xxL	1,152	0.31	0.22	0.09	${ }^{357}$	253	104
Roosevelt Schools NY	Washington-Rose Elementary School	3292		Classroom 2003	1	1	0.0632	0.0280	$2 \times 2,4$-Lamp ${ }^{\text {d8 }}$	LED int Divier Lamps, (4) 2 'Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools Nr	Wastington-Rose Elementary School	3302		Classroom 2004	1	1	0.020	0.020	LED Fixure, 20 W	will Not be Retroft	1,152	0.02	0.02		23	23	
Roosevelt Schools Mr	Wastington-Rose Elementary School	3312		Classroom 2004	2	2	0.0310	. 0220	ED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.06	0.04	0.02	71	51	21
Roosevelt Schools NY	Wastington-Rose Elementary School	332		Classroom 2004	10	10	0.0310	0.0220	LED Fixure, 1424 BR	LED int. Diver Lamps, (2) 4 Lamps, xxL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools Mr	Wastington-Rose Elementary School	3332		Classroom 2004	2	2	0.0632	0.0280	<2, 4 -Lamp T8	LED Int. Divier Lamps, (4) 2 Lamps	1,152	13	0.06	0.07	146	${ }_{6}$	${ }^{81}$
Roosevelt Schools Mr	Washington-Rose Elementary School	3342		Classroom 2005	1	1	0.020	0.0200	LED Fixture, 20 N	will Not be Retroft	1,152	0.02	0.02		23	23	
Roosevelt Schools NY	Washington-Rose Elementary School	3352		Classroom 2005	3	3	0.0310	0.0220	LED Fixure, 1424 BR	LED int. Diviver Lamps, (2) 4 Lamps	${ }^{1,152}$	0.09	0.07	0.03	107	76	31
Roosevelt Schools NY	Wastington-Rose Elementary School	3362		Classroom 2005	10	10	0.0310	0.0220	LED Fixture, 1424 8R	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	1,152	${ }_{0.31}$	0.22	0.09	${ }^{357}$	253	104
Roosevelt Schools NY	Washington-Rose Elementary School	$337 / 2$		Classroom 2005	1	1	0.0632	0.0280	2x, 4-Lamp T8	LED int. Diver Lamps, (4) 2'Lamps	1,152	0.06	0.03	0.04	${ }^{73}$	32	41
Roosevelt Schools NY	Washington-Rose Elementary School	3382		Classroom 2006	1	1	0.020	0.0200	LED Fixure, 20 W	will Not be Retroft	1,152	0.02	0.02		23	23	
Roosevelt Schools Nr	Wastington-Rose Elementary School	3392		Classroom 2006	2	2	0.0310	0.0220	LED Fixture, 1424 8R	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.06	0.04	0.02	${ }^{71}$	51	21
Roosevelt Schools NY	Washington-Rose Elementary School	3402		Classroom 2006	10	10	0.0310	0.0220	LED Fixtre, 14248 BR	LEED Int. Diviver Lamps, (2) 4 Lamps, xxL	1,152	0.31	0.22	0.09	${ }^{357}$	253	104
Roosevelt Schools NY	Washington-Rose Elementary School	3412		Classroom 2006	2	2	0.0632	0.0280	2x, 4-Lamp T8	LEED Int Diviver Lamps, (4) 2 'Lamps	1,152	0.13	0.06	0.07	146	65	81
Roosevelt Schools NY	Wastingon-Rose Elementary School	3422		Halway H4	5	5	0.0350	0.0350	LED Fixure, 35W	will Not be Retroft	2.400	0.18	0.18		420	420	
Roosevelt Schools NY	Wastington-Rose Elementary School	3432		Halway H4	3	3	0.0350	0.0350	ED F Fixtue, 35 W	will Not be Retroft	8,760	0.11	0.11		920	920	
Roosevelt Schools NY	Wastington-Rose Elementary School	3442		Halway 44	18	18	0.0560	0.0130	CF PL (2) 26w	LED Retrofit Can Kit. 6 hnch, NLO	2,400	1.01	0.23	0.77	2.419	562	1,858
Roosevelt Schools NY	Wastington-Rose Elementary School	3452		Hallway H	2	2			No Retrofit	will Not be Retroft	8,760						
Roosevelt Schools NY	Wastington-Rose Elementary School	3462		Hallway H5	26	26	.0350	. 0350	ED Fixture, 35 W	will Not be Retroft	2,400	0.91	0.91		2,184	2,184	
Roosevelt Schools NY	Washington-Rose Elementary School	3477		Halway H5	6	6	0.0350	0.0350	LED Fixture, 35W	will Not be Retroft	8,760	0.21	0.21		1.840	1,840	

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { afy } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { aty } \end{gathered}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripition	Total Hours	$\begin{gathered} \text { Total Pre } \\ k w \end{gathered}$	$\begin{gathered} \text { Total Post } \\ k w \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \\ \hline \end{gathered}$	Total kWn Existing	Total kWh Proposed	$\begin{gathered} \text { Total kWh } \\ \text { Saved } \end{gathered}$
Roosevelt Schools Mr	Wastington-Rose Elementary School	3482		Hallway H	1	1			No Retrofit	will Not be Retoroft	8,760						
Sosevelt Schools NY	Wastingon-Rose Elementary School	3492		Hallway H6	3	3	. 0350	. 0350	ED Fixture, 351	will Not be Rerofoft	2.400	0.11	0.11		252	252	
Sosevelt Schools NY	Wastington-Rose Elementary School	3502		alway H6	3	3	0.0350	. 0350	LED Fixtue, 35 W	will Not be Retoroft	8,760	0.11	0.11		920	920	
Roosevelt Schools NY	Washington-Rose Elementary School	3512		Halway н6 $^{\text {d }}$	7	7	0.0560	0.0130	CF PL (2) 26w	LED Retrofit an Kitt, 6 nch, NLO	2,400	0.39	0.09	0.30	991	218	72
Rosesevel Schools NY	Wastingon-Rose Elementary School	3522		Hallway H6	3	3			No Retroft	will Not be Retoroft	8.760						
Roosevelt Schools Mr	Wastington-Rose Elementary School	3532		almay $\mathrm{H6}$	2	2	550	0.030	PL(2) 26 w	LED Retrofit Can Kit, 6 nch, NLO	2,400	11	0.03	0.09	269	62	206
Roosevelt Schools Mr	Washington-Rose Elementary School	3541		Classroom 1012	1	1	0.020	0.0200	ED Fixture, 20w	will Not be Retoroft	1,152	0.02	0.02		23	23	
Roosevelt Schools Nr	Wastingon-Rose Elementary School	3551		Classroom 1012	2	2	3310	0.022	LED Fixture, 1424 8R	LED Int. Divier Lamps, (2) 4 Lamps	1,152	06	0.04	0.02	71	51	21
Sosevelt Schools NY	Washington-Rose Elementary School	3561		Classroom 1012	10	10	0.0310	0.02	ED Fixtur, 1424 BR	LED lnt. Diviver Lamps, (2) 4 Lamps, XxL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools NY	Washington-Rose Elementary School	3571		Classroom 1012b	1	1	0.0632	0.0280	x2, 4-Lamp T8	LED Int. Diviver Lamps, (4) 2^{2} Lamps	2,079	0.06	0.03	0.04	131	58	73
Roosevelt Schools NY	Wastington-Rose Elementary School	3581		Classroom 1013	1	1	0.020	0.020	LED Fixtur, 20w	will Not be Retoroft	1,152	0.02	0.02		23	23	
Roosevelt Schools Mr	Washington-Rose Elementary School	3591		Classroom 1013	3	3	0.0310	0.0220	ED Fixure, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.09	0.07	0.03	107	76	31
Roosevelt Schools NY	Wastington-Rose Elementary School	3601		Classroom 1013	10	10	0.0310	0.0220	LED Fixure, 1424 BR	LED lnt. Diviver Lamps, (2) 4 Lamps, XxL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools NY	Wastingon-Rose Elementary School	3611		Classroom 1013	1	1	0.0632	0.0280	2x, 4-Lamp T8	LED Int. Divier Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	${ }^{73}$	32	41
Roosevelt Schools Mr	Wastington-Rose Elementary School	3621		Classroom 1013b	1	1	0.0632	0.0280	2, 4-L-amp T8	LED Int. Diver Lamps, (4) 2 Lamps	2.079	0.06	0.03	0.04	${ }_{131}$	58	73
Roosevelt Schools NY	Wastington-Rose Elementary School	3631		Classroom 1015	1	1	0.0200	0.0200	LED Fixure, 20 W	will Not be Retoroft	1,152	0.02	0.02		23	23	
Roosevelt Schools Nr	Wastington-Rose Elementary School	3641		Classroom 1015	2	2	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps	, 1, 52	0.06	. 04	0.02	71	51	21
Roosevelt Schools NY	Wastington-Rose Elementary School	3651		Classroom 1015	2	2	. 0632	. 0280	2, 4 -L-amp T8	LED Int. Divier Lamps, (4) 2 Lamps	1,152	0.13	0.06	0.07	146	65	81
Roosevelt Schools NY	Wastington-Rose Elementary School	3661		Classroom 1015	10	10	0.0310	0.0220	LED Fixure, 1424 BR	LED lnt. Diviver Lamps, (2) 4 Lamps, XxL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools Mr	Wastington-Rose Elementary School	3671		Classroom 1015	1	1	0.0632	0.0280	<2, 4 -Lamp T8	LED Int. Diviver Lamps, (4) 2 Lamps	2.079	06	0.03	0.04	${ }^{131}$	58	73
Roosevelt Schools Mr	Washington-Rose Elementary School	3681		Classroom 1016	10	10	0.0310	0.0220	LED Fixtre, 12248 BR	LED lnt. Diviver Lamps, (2) 4 Lamps, XxL	2.079	0.31	0.22	0.09	${ }^{644}$	457	187
Roosevelt Schools NY	Washington-Rose Elementary School	3691		Classroom 1016	1	1	0.020	0.0200	LED Fixure, 20 W	will Not be Retoroft	1,152	0.02	0.02		23	23	
Roosevelt Schools NY	Wastington-Rose Elementary School	3701		Classroom 1016	3	3	0.0310	0.0220	LED Fixture, 1424 8R	LED Int. Divier Lamps, (2) 4 Lamps	1,152	0.09	0.07	0.03	107	76	31
Roosevelt Schools NY	Washington-Rose Elementary School	3711		Classroom 1016	1	1	0.0632	0.0280	2x, 4-Lamp T8	LED Int. Diviver Lamps, (4) 2 ${ }^{\text {Lamps }}$	1,152	0.06	0.03	0.04	${ }^{73}$	32	41
Roosevelt Schools NY	Washington-Rose Elementary School	3721		Classroom 1016b	1	1	0.0632	0.0280	2x2, 4-Lamp T8	LED Int. Diviver Lamps, (4) 2^{2} Lamps	2.079	0.06	0.03	0.04	131	58	73
Roosevelt Schools NY	Wastington-Rose Elementary School	3731		Classroom 1018	10	10	0.0310	0.0220	LED Fixture, 1424 8R	LED int. Diviver Lamps, (2) 4 Lamps, XXL	2.079	0.31	0.22	0.09	${ }^{644}$	457	187
Roosevelt Schools NY	Washington-Rose Elementary School	3741		Classroom 1018	1	1	0.020	0.0200	ED Fixture, 20w	will Not be Retorfit	1,152	0.02	0.02		23	23	
Roosevelt Schools NY	Washington-Rose Elementary School	3751		Classroom 1018	2	2	0.0310	0.0220	LED Fixtre, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.06	0.04	0.02	71	51	21
Roosevelt Schools NY	Wastingon-Rose Elementary School	3761		Classroom 1018b	1	1	0.0632	0.0280	2x, 4-Lamp T8	LED Int. Divier Lamps, (4) 2 Lamps	2.079	0.06	0.03	0.04	131	58	73
Roosevelt Schools NY	Washington-Rose Elementary School	3771		Classroom 1022	10	10	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	2.079	0.31	0.22	0.09	644	457	187
Roosevelt Schools NY	Wastington-Rose Elementary School	3781		Classroom 1022	1	1	0.0200	0.0200	LED Fixure, 20 W	will Not be Retoroft	1,152	0.02	0.02		23	23	
Roosevelt Schools NY	Wastington-Rose Elementary School	3791		Classroom 1022	2	2	0.0310	0.02	LED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.06	0.04	0.02	${ }^{71}$	51	21
Roosevelt Schools NY	Wastington-Rose Elementary School	3801		Classroom 1022			0.0632	. 0280	x2, 4-L-amp T8	LED Int. Diver Lamps, (4) 2 Lamps	1,152	06	0.03	0.04	${ }^{73}$	32	41
Roosevelt Schools NY	Washington-Rose Elementary School	3811		Classroom 1022b			0.0632	0.0280	$2 \times 2,4$-amp T8	LeD int Diviver Lamps, (4) ${ }^{2}$ Lamps	2,079	0.06	0.03	0.04	131	58	73

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Flor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Existing Description	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total KWh Existing	Total kWh	$\begin{gathered} \text { Total kWh } \\ \text { Saved } \end{gathered}$
Roosevelt Schools NY	Wastingtor-Rose Elementary School	3821		Classroom 1023	10	10	0.0310	0.0220	LED Fixtre, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XxL	2,079	0.31	0.22	0.09	644	457	187
Soseselt Schools NY	Wastingtor-Rose Elementar School	3831		Classroom 1023	1	1	0.020	0.020	Led fixure, 20W	will Not be Retoroft	. 152	0.02	0.02		23	23	
Soseltt Schools NY	Wastington-Rose Elementary School	3841		assroom 1023	3	3	${ }^{\text {0.0310 }}$	0.022	LED Fixtre, 12448 BR	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.09	0.07	0.03	107	76	31
Roosevelt Schools NY	Wastingtor-Rose Elementary School	3851		Classroom 1023	1	1	0.0632	0.0280	$2 \times 2,4$-Lamp ${ }^{\text {d8 }}$	LED Int. Diviver Lamps, (4) $2^{\text {L Lamps }}$	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools NY	Wastingtor-Rose Elementary School	3861		Classroom 1023b	1	1	0.0632	0.0280	x2, 4-Lamp T8	LED Int Diviver Lamps, (4) 2'Lamps	2,400	0.06	0.03	0.04	152	67	84
Roosevelt Schools NY	Wastingotor-Rose Elementary School	3871		Classroom 1025	10	10	0.0310	0.0220	LED Fixture, 1424 BR	LED Int Diviver Lamps, (2) 4 Lamps, XXL	2.079	0.31	0.22	0.09	644	457	187
Roosevelt Schools NY	Wastingtor-Rose Elementary School	3881		Classroom 1025	1	1	0.020	0.020	LED Fixure, 20w	will Not be Retofoit	1,152	0.02	0.02		23	23	
Roosevelt Schools NY	Wastington-Rose Elementar School	3891		Classroom 1025	2	2	0310	0.0220	LED Fixtre, 14248 BR	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.06	0.04	0.02	71	51	21
Sosevelt Schools NY	Wastingtor-Rose Elementary School	3901		Classroom 1025	1	1	0632	0.0280	8, 4-Lamp T8	LED Int. Diver Lamps, (4) 2 ${ }^{\text {Lamps }}$	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools NY	Wastingtor-Rose Elementary School	3911		Classroom 1026	10	10	0.0310	0.0220	LED Fixtre, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XxL	2,079	0.31	0.22	0.09	644	457	187
Roosevelt Schools Nr	Wastington-Rose Elementar School	3921		Classroom 1026	1	1	0.0200	0.020	LED Fixure, 20W	will Not be Retoroft	1,152	0.02	0.02		${ }^{23}$	23	
Roosevelt Schools NY	Washingtor-Rose Elementar School	3931		Classroom 1026	2	2	0.0310	0.0220	ED Fixtur, 1242 Br	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.06	0.04	0.02	71	51	21
Roosevelt Schools NY	Wastingtor-Rose Elementary School	3941		Classroom 1026	1	1	0.0632	0.0280	x2, 4-Lamp T8	LED Int. Diviver Lamps, (4) $2^{\text {L }}$ Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schoos NY	Wastingon-Rose Elementar School	3951		Classroom 1026b	1	1	0.0632	0.0280	2x2, 4-Lamp T8	LED Int Diviver Lamps, (4) 2'Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools NY	Wastington-Rose Elementar School	3961		Office 1029	6	6	0.0280	0.0130	FPL 26 w	LED Retrofit Can Kit, 6 nch, NLO	1,152	0.17	0.08	0.09	194	90	104
Roosevelt Schools NY	Wastingtor-Rose Elementary School	3971		Office 1029	2	2	0.0310	0.0220	LED Fixtre, 1424 8R	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	1,152	0.06	0.04	0.02	71	51	21
Roosevelt Schools NY	Wastingtor-Rose Elementary School	3981		Classroom 1028	14	14	0.0310	0.022	LED Fixtre, 1424 8R	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	1,152	0.43	0.31	0.13	500	355	145
Roosevelt Schools NY	Wastington-Rose Elementar School	3991		Classroom 1028	1		0.0632	0.0280	x2, 4-Lamp T8	LED Int. Diviver Lamps, (4) 2 Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools NY	Wastingtor-Rose Elementary School	4001		Classroom 1028b	1	1	0.0632	0.0280	$2 \times 2,4$-Lamp ${ }^{\text {8 }}$	LED Int. Diver Lamps, (4) 2^{2} Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools NY	Wastingotor-Rose Elementary School	4011		Uuily E\|3	1	1	${ }^{0.0534}$	0.022	1x4, -2-amp T8	LED Int Diviver Lamps, (2) 4 Lamps	750	0.05	0.02	0.03	40	17	24
Roosevelt Schools NY	Wastingtor-Rose Elementary School	4021		Faciliy Bathoom	1		0.0710	0.0350	2×2 2-Lamp 40 Biax	LED Retorfit Panel $\mathrm{Kt,2}$ 2x2, NLO	2,400	0.07	0.04	0.04	70	84	${ }^{86}$
Roosevelt Schools NY	Wastingtor-Rose Elementary School	4031		Faciliy Bathoom	1	1	0.0710	0.0350	$2 \times 2,2$-amp 40 Biax	LED Retorfit Panel Kt , 2x2, NLO	2,400	0.07	0.04	0.04	170	84	86
Roosevelt Schools Nr	Wastington-Rose Elementar School	4041		Security Office	2	2	0.0710	0.0350	x2, 2-Lamp 40 Biax	LED Retoroft Panel Ki, 2x2, nLo	1,152	0.14	0.07	0.07	164	81	83
Roosevelt Schools NY	Wastingor-Rose Elementary School	4051		Conference Room	2	2	0.0310	0.0240	LED Fixtre, 1424 8R, EM	LED Type C Lamps, (2) 4 Lamp, LEED Diver, DIM	2,200	0.06	0.05	0.01	136	106	31
Roosevelt Schools NY	Wastington-Rose Elementary School	4061		Conference Room	6	6	0.0560	0.0130	CF PL (2) 26w	Leo Retrofit Can Kit, 6 nch, NLO	1,760	0.34	0.08	0.26	591	${ }_{137}$	${ }_{4}^{45}$
Roosevelt Schools Nr	Wastington-Rose Elementar School	4071		Office 1049	11	11	0.0280	0.033	CFPL 26 w	LED Retrofit Can Kit, 6 nch, NLO	1,152	0.31	0.14	0.17	355	165	190
Roosevelt Schools NY	Wastingor-Rose Elementary School	4081		Office 1049	2	2	0.0534	0.022	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.11	0.04	0.06	123	51	72
Roosevelt Schools NY	Wastingtor-Rose Elementary School	4091		Office 1049	4	4	0.0280	0.0130	CF PL 26w	LED Retrofit Can Kit, 6 nch, NLO	1,152	0.11	0.05	0.06	129	60	69
Roosevelt Schools Nr	Wastingtor-Rose Elementar School	4101		Office 1049	1	1			No Retroft	will Not be Retoroft	8,760						
Roosevelt Schools NY	Washington-Rose Elementary School	4111		Storage 1050	2	2	0.0534	0.0220	1xa, 2-Lamp T8	LeD Int. Diviver Lamps, (2) 4 Lamps	600	0.11	0.04	0.06	64	26	38
Roosevelt Schools NY	Wastingtor-Rose Elementary School	4121		cpy Room	4	4	0.0710	0.0350	2x2, 2-Lamp 40 Biax	LED Retoroft Panel $\mathrm{Kt} ,\mathrm{2} \mathrm{\times 2}$,	1,152	0.28	0.14	0.14	327	161	166
Roosevelt Schools NY	Wastingtor-Rose Elementary School	4131		Principal Batroom	1	1	0.0710	0.0350	2x2, 2-Lamp 40 Biax	LED Retoroit Panel Kt , 2x2, NLO	2,400	0.07	0.04	0.04	170	84	${ }_{6}$
Roosevelt Schools NY	Washington-Rose Elementary School	4141		Nurse office 1034	,	9	0.0280	0.0130	CFPL 26 w	LED Retrofot Can Kit, 6 ncch, NLO	1,152	0.25	0.12	0.14	290	135	156
Roosevelt Schools NY	Wastington-Rose Elementary School	4151		Nurse office 1034	2		0.0710	0.0350	2x2, 2-Lamp 40 Biax	LED Retroftit Panel $\mathrm{Kt,2}$ 2x2, NLO	1,152	0.14	0.07	0.07	164	81	

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{aligned} & \text { Proposed } \\ & \text { Qty } \end{aligned}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \mathrm{kN} \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	Total kWh Prooosed	Total kWh
Roosevelt Schools NY	Wastington-Rose Elementary School	4161		Nurse office 1034	3	3	0.060	0.0290	$1 \times 4,2$-Lamp T5E	LED Int. Diviver Lamp, (2) 4 ' 5 HE Lamps	1,152	0.18	0.09	0.09	207	100	107
Roosevelt Schools NY	Washington-Rose Elementary School	4171		Murse office 1034	2	2	0.0710	0.0350	Biax	LED Retorfit Panel Kit, 2x, MLo	1,152	0.14	0.07	0.07	164	81	83
Sosevelt Schools NY	Washington-Rose Elementary School	4181		se Office 1034	1	1			No Retroft	will Not be Retofoft	8.760					-	
Roosevelt Schools NY	Wastington-Rose Elementary School	4191		Exam Room	2	2	0.0465	0.0330	LED Fixture, 2434 BR	LED Int. Diver Lamps, (3) 4 Lamps	1,440	0.09	0.07	0.03	134	95	39
Roosevelt Schools NY	Washington-Rose Elementary school	4201		Record Room	2	2	0.046	0.0330	LED Fixture, 2334 BR	LED int. Driver Lamps, (3) 4 Lamps	1,440	0.09	0.07	0.03	134	95	39
Roosevelt Schools NY	Washington-Rose Elementary School	421		Uuilit Room	2	2	0.0310	0.0220	LED Fixtre, 1248 BR	LED int. Driver Lamps, (2) 4 Lamps	750	0.06	0.04	0.02	47	33	14
Roosevelt Schools NY	Washington-Rose Elementary School	4221		Nurse Office 1033	4	4	0.0710	0.0350	2×2 2--tamp 40 Biax	LED Retroft Panel Kit, 2x, NLO	1,152	0.28	0.14	0.14	327	161	166
Roosevelt Schools NY	Washington-Rose Elementary School	4231		Office 1043	4	4	0.0710	0.0350	2, 2-Lamp 40 Biax	LED Retorfit Panel Kit, 2x, MLo	1,760	0.28	0.14	0.14	500	246	253
Roosevelt Schools NY	Wastington-Rose Elementary School	424		Office 1045	4	4	0.0710	0350	2, 2-L-Lamp 40 Biax	LED Retoffit Panel Kit, 2x, MLO	1,760	0.28	0.14	0.14	500	246	253
Roosevelt Schools NY	Wastington-Rose Elementary School	4251		Office 1042	4	4	0.0710	0.0350	2×2 2--Lamp 40 Biax	LED Retroft Panel Kit 22x, NLO	1,760	0.28	0.14	0.14	500	246	253
Roosevelt Schools NY	Washington-Rose Elementary School	4261		Halway $\mathrm{H7}$	5	5	0.0710	0.0350	22, 2-Lamp 40 Biax	LED Retorfit Panel Kit, 2x, MLo	3,000	0.36	0.18	0.18	, 065	525	540
Roosevelt Schools NY	Wastington-Rose Elementary School	4271		Halway H7	2	2			No Retroft	will Not be Refoff	8,760						
Roosevelt Schools NY	Wastington-Rose Elementary School	4281		Classroom 1004	10	10	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XxL	2,079	0.31	0.22	0.09	644	457	187
Roosevelt Schools NY	Washington-Rose Elementary School	4291		Classroom 1004	2	2	0.0280	0.0130	CF PL 26w	LED Retrofit Can Kit, 6 nch, NLO	1,152	0.06	0.03	0.03	${ }^{65}$	30	35
Roosevelt Schools NY	Washington-Rose Elementary School	4301		Classroom 1004	2	2	0.0310	0.022	LED Fixture, 124 BR	LED int. Diver Lamps, (2) 4 Lamps	1,152	0.06	0.04	0.02	71	51	21
Roosevelt Schools NY	Wastington-Rose Elementary School	431		Classroom 1004b	1	1	0.0632	0.0280	2x2, 4-Lamp T8	LED Int. Diver Lamps, (4) ${ }^{\text {L Lamps }}$	2,079	0.06	0.03	0.04	131	58	73
Roosevelt Schools NY	Washington-Rose Elementary School	4321		Classroom 1005	10	10	0.0310	0.0220	LED Fixtre, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	2.079	0.31	0.22	0.09	644	457	187
Roosevelt Schools NY	Washington-Rose Elementary School	4331		Classroom 1005	1	1	0.0200	0.0200	ED Fixture, 20W	will Not be Retorfit	1,152	0.02	0.02		23	23	
Roosevelt Schools NY	Wastington-Rose Elementary School	4341		Classroom 1005	3	3	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps	1,152	0.09	0.07	0.03	107	76	31
Roosevelt Schools NY	Washington-Rose Elementary school	4351		Classroom 1005	1	1	0.0632	0.0280	22, 4 -Lamp T8	LED int. Driver Lamps, (4) ${ }^{\text {L Lamps }}$	1,152	0.06	0.03	${ }^{0.04}$	73	32	41
Roosevelt Schools NY	Washington-Rose Elementary School	4361		Classroom 1005b	1	1	0.0632	0.0280	2×2.4 - amp T8	LED int. Diver Lamps, (4) ${ }^{\text {L Lamps }}$	2,400	0.06	0.03	0.04	152	67	84
Roosevelt Schools NY	Washington-Rose Elementary School	4371		Classroom 1007	10	10	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps, XXL	1,152	0.31	0.22	0.09	357	253	104
Roosevelt Schools NY	Washington-Rose Elementary School	4381		Classroom 1007	1	1	0.063	0.0280	2x2, 4-Lamp T8	LED int. Divier Lamps, (4) ${ }^{2}$ Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools NY	Washington-Rose Elementary School	4391		Classrom 1007	2	2	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Divier Lamps, (2) 4 Lamps	1,152	0.06	0.04	0.02	71	51	21
Roosevelt Schools NY	Washington-Rose Elementary School	4401		Classroom 1008	10	10	0.0310	0.0220	LED Fixture, 1424 gr	LED Int. Diviver Lamps, (2) 4 Lamps, XxL	2.079	0.31	0.22	0.09	644	457	187
Roosevelt Schools NY	Washington-Rose Elementary School	441		Classtoom 1008	1	1	0.0200	0.020	LED Fixture, 20w	will Not be Retoroft	1,152	0.02	0.02		23	23	
Roosevelt Schools NY	Washington-Rose Elementay School	4421		Classroom 1008	3	3	0.0310	0.0220	LED Fixture, 1424 BR	LeD Int. Diviver Lamps, (2) 4 Lamps	1,152	0.09	0.07	0.03	107	76	31
Roosevelt Schools NY	Wastington-Rose Elementary School	4431		Classroom 1008	1	1	0.0632	0.0280	2x2, 4-Lamp T8	LED Int. Diviver Lamps, (4) ${ }^{2}$ Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools NY	Washington-Rose Elementary School	444.		Classroom 1008b	1	1	0.0632	0.0280	2x2, 4-Lamp T8	LED Int. Divier Lamps, (4) ${ }^{2}$ Lamps	2,400	0.06	0.03	0.04	152	67	84
Roosevelt Schools NY	Washington-Rose Elementay School	4451		Classroom 1010	10	10	0.0310	0.0220	LED Fixture, 1424 BR	LeD Int. Diviver Lamps, (2) 4 Lamps, XXL	2.079	0.31	0.22	0.09	644	457	187
Roosevelt Schools NY	Wastington-Rose Elementary School	4461		Classsoom 1010	1	1	0.0200	0.0200	LED Fixure, 20 W	will Not be Retoroft	1,152	0.02	0.02		23	23	
Roosevelt Schools NY	Washington-Rose Elementar School	4471		Classroom 1010	2	2	0.0310	0.02	LED Fixture, 1424 BR	LED Int. Driver Lamps, (2) 4 Lamps	1,152	0.06	0.04	0.02	71	51	21
Roosevelt Schools NY	Washington-Rose Elementary School	4481		Classroom 1010	1	1	0.063	0.0280	$2 \times 2,4$-Lamp T8	LED Int. Diviver Lamps, (4) ${ }^{2}$ Lamps	1,152	0.06	0.03	0.04	73	32	41
Roosevelt Schools NY	Wastington-Rose Elementary School	4491		Halway н8	3	3	0.0350	0.0350	LeD Fixture, 35W	will Not be Retoroft	2.400	0.11	0.11		252	25	

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{aligned} & \text { Existing } \\ & \text { Qty } \end{aligned}$	$\begin{aligned} & \text { Proposed } \\ & \text { Qty } \end{aligned}$	Existing kw	Proposed kw	Existing Descripion	Proposed Descripion	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{gathered} \text { Total Post } \\ \mathrm{kN} \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Saved kW } \end{gathered}$	Total kWh Existing	Total kWh Prooosed	Total kWh
Roosevelt Schools NY	Wastington-Rose Elementary School	4501		Halway нв	3	3	0.0350	0.0350	LED Fixure, 35W	will Not be Retoroft	8,753	0.11	0.11		919	919	
Roosevelt Schools NY	Washington-Rose Elementary School	451		Halway н8	8	8	${ }^{0.0560}$	0.0170	26 w	LED Retrofit Can Kit. 8 nch, HLO	2.400	0.45	0.14	0.31	. 075	326	749
Soseltt Schools NY	Washington-Rose Elementary School	4521		Imay H	2	2			No Retroft	will Not be Retorft	8,760					-	
Roosevelt Schools NY	Wastington-Rose Elementary School	4531		Hallway н9	24	24	0.0310	0.0220	LED Fixture, 1424 BR	LED Int. Diviver Lamps, (2) 4 Lamps	2,400	0.74	0.53	0.22	1,786	1,267	518
Roosevelt Schools NY	Washington-Rose Elementary school	454.		Halway H9	8	8	${ }^{0.0310}$	0.0220	ED Fixtur, 1424 Br , EM	LED int. Driver Lamps, (2) 4 Lamps	8,753	0.25	0.18	0.07	2.171	1,541	630
Roosevelt Schools MY	Washington-Rose Elementary School	4551		Halway H9	2	2	0.056	00100	PL(2) 26w	LED Retofotit an Kit, 4 loch, , HLO	2,400	0.11	0.02	0.09	269	48	221
Roosevelt Schools MY	Washington-Rose Elementary School	4561		Halway н9	2	2	0.2350	0.1000	1x8, 4-Lamp T5H4 ${ }^{\text {a }}$	LeD Int Diviver Lamp, (4) 4 T5 Ho Lamps	3,000	0.47	0.20	0.27	1,410	600	810
Roosevelt Schools MY	Washington-Rose Elementary School	4571		Halway н9	8	8	0.2900	0.0800	Sow	LED Flood Light -10,000 Lumens, Yk, x, wh, H1	3.000	2.32	. 64	1.68	6.960	1,920	5.040
Roosevelt Schools NY	Washington-Rose Elementary School	4581		Halway H9	3	3	0.056	0170	PL(2) 20	LED Retrofit Can Kit, 8 hnch, HLo, H1	2,400	0.17	0.05	0.12	403	122	281
Roosevelt Schools NY	Washington-Rose Elementary School	4591		Halway н9	2	2			No Retofit	will Not be Retoroft	8.760	-					
Roosevelt Schools MY	Washington-Rose Elementary School	4601		Halway H10	2	2	0.0350	0.0350	LED Fixture, 35W	will Not be Retoroft	2.400	0.07	0.07		168	168	
Roosevelt Schools NY	Washington-Rose Elementary School	4611		Salway H 10	3	3	0.0350	0.0350	D F Fixtue, 35 N	will Not be Retroft	8,753	0.11	0.11		919	919	
Roosevelt Schools MY	Wastington-Rose Elementary School	4621		Halway H10	5	5	0.0560	0.0170	CF PL (2) 26w	LED Retroftit an Kit, 8 nch, HLO	2,400	0.28	0.09	0.20	672	204	468
Roosevelt Schools MY	Washington-Rose Elementary School	4631		Halway H10	2	2			No Retroft	will Not be Retorft	8,760						
Roosevelt Schools NY	Washington-Rose Elementary School	4641		Cafeereia 1054	34	34	0.0546	0.0220	-amp Tr, DS	LED int. Diviver Lamps, (2) 4 4 Lamps, DS	1.840	1.86	0.75	1.11	3,416	1,376	2,039
Roosevelt Schools NY	Washington-Rose Elementary School	4651		Cafeteria 1054	18	18	0.0534	0.0220	1x+, -2-amp 8	LED int. Diviver Lamps, (2) 4 Lamps, H1	1.840	0.96	0.40	0.57	1,769	729	1.040
Roosevelt Schools MY	Washington-Rose Elementary School	4661		Cafereria 1054	14	14	0.056	0.0210	PL (2) 26w	LED Retorfit Can Kit, 10 Inch, NLO, H1	1,840	0.78	0.29	0.49	, 443	541	902
Roosevelt Schools MY	Washington-Rose Elementary School	4671		Cafereria 1054	15	15	0.2350	0.1000	x8, 4-Lamp TH $\mathbf{4}^{4}$	LED int. Diver Lamp, (4) 4 ' 5 Ho Lamps, H1	1,840	3.53	1.50	2.03	6,486	2.760	3,726
Roosevelt Schools MY	Wastington-Rose Elementary School	4681		Cafeteria 1054	8	8	0.1170	0.0500	1x4, 2-Lamp 5 Ho	LED lnt. Diver Lamp, (2) 4' 5 Ho Lamps, H1	1.840	0.94	0.40	0.54	1,722	736	986
Roosevelt Schools MY	Washington-Rose Elementary school	468.11		Cafereria 1054	1	1	0.3520	0.1500	K4, 6-Lamp t5 Ho	LED Int Diviver Lamp, (6) 4 T 5 Ho Lamps	1,840	0.35	0.15	0.20	648	276	372
Roosevelt Schools MY	Washington-Rose Elementary School	468.21		Cafeereia 1054	2	2	0.0850	0.0290	Lamp TSH	LED int Diviver Lamp, (2) ${ }^{3}$ T5 Ho Lamps	1.840	0.17	0.06	0.11	313	107	206
Roosevelt Schools NY	Washington-Rose Elementary School	4691		Cafeteria 1054	2	2			No Retofit	will Not be Retoroft	8,760	-					
Roosevelt Schools MY	Washington-Rose Elementary School	4701		Facilit Dnning 1058	11	11	0.0710	0.0350	x2, 2-Lamp 40 Biax	LED Retorfit Panel Kit, 2x, MLL	864	0.78	0.39	0.40	675	333	342
Roosevelt Schools NY	Washington-Rose Elementary School	471		Storage 1057	2	2	0.0710	0.0350	$2 \times 2,2$-Lamp 40 Biax	LED Retroft Panel Kit, 2x, , Lo	750	0.14	0.07	0.07	107	53	54
Roosevelt Schools MY	Washington-Rose Elementary School	4721		Kitchen 1055	22	22	0.0710	0.0350	2×2 2-Lamp 40 Biax	LED Retroft Panel Kit, 22, NLO	1,200	1.56	0.77	0.79	1.874	924	950
Roosevelt Schools NY	Washington-Rose Elementary School	4731		Kithen 1055	1	1	0.0280	0.0120	FPL 26 w	LED Retrofit an Kit, 8 Inch, , NLO	1,200	0.03	0.01	0.02	34	14	19
Roosevelt Schools NY	Washington-Rose Elementary School	474 ,		Kitchen 1055 Oven Hood	3	3	0.0534	0.0220	4, 2-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	1,200	0.16	0.07	0.09	192	79	${ }_{113}$
Roosevelt Schools MY	Washington-Rose Elementary School	4751		Kitchen 1055	2	2			No Retorit	will Not te Retoroft	8,760						
Roosevelt Schools NY	Washington-Rose Elementary School	4761		Wak-in Cooler 1056	1	1	0.0534	0.0220	1x, 2--2amp T8	LED Int. Diver Lamps, (2) 4 ${ }^{4}$ Lamps, XL	3,750	0.05	0.02	0.03	200	83	118
Roosevelt Schools NY	Washington-Rose Elementray School	4771		Storae 1059a	2	2	0.0710	0.0350	2x2, -2-Iamp 40 Biax	LED Retroft Panel Kit, 2x, MLO	750	0.14	0.07	0.07	107	${ }_{53}$	54
Roosevelt Schools MY	Washington-Rose Elementary School	4781		Office 1063	1	1	0.0534	0.0220	2x4, -2-amp T8	LED Int. Driver Lamps, (2) 4 Lamps	1,152	0.05	0.02	0.03	62	25	36
Roosevelt Schools NY	Washington-Rose Elementary school	4791		Jc 1062	1	1	0.0534	0.0220	2x4, 2-Lamp T8	LED int. Driver Lamps, (2) 4 Lamps	750	0.05	0.02	0.03	40	17	24
Roosevelt Schools NY	Wastington-Rose Elementary School	4801		Uuity 1061	1	1	0.0534	0.0220	1x4, --Lamp T8	LED Int. Diver Lamps, (2) 4 L Lamps	750	0.05	0.02	0.03	40	17	24
Roosevelt Schools MY	Washington-Rose Elementray School	4811		Storage 1073	2	2	0.0710	0.0350	$2 \times 2,2-\operatorname{tamp} 40$ Biax	LED Retroft Panel Kit, 2x, NLO	750	0.14	0.07	0.07	107	${ }_{53}$	54

Roosevelt UFSD, NY
Exhibit D-5-1
Lighting Line by Line

Site Name	Building Name	Index	Floor	Location	$\begin{gathered} \text { Existing } \\ \text { Qty } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Qty } \end{gathered}$	Existing kw	Proposed kw	Exising Descripion	Proposed Description	Total Hours	$\begin{gathered} \text { Total Pre } \\ \text { kW } \end{gathered}$	$\begin{aligned} & \text { Total Post } \\ & \text { kW } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Sovec } \end{array}$	Total kWn Existing	Total kWh	$\begin{aligned} & \text { Total kWh } \\ & \text { Saved } \end{aligned}$
Roosevelt Schools NY	Wastingtor-Rose Elementary School	482		Bathroom, Mer's BR2	2	2	0.0560	0.0130	CF PL (2) 26w	LED Retrofit Can Kit, 6 hnch, NLO	2,400	0.11	0.03	0.09	269	62	206
Soseselt Schools NY	Wastingtor-Rose Elementar School	483		Bathroom, Mer's	1	1	534	0.0220	4, 2-Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	2,400	0.05	. 02	0.03	${ }^{128}$	53	75
Sosevelt Schools NY	Wastingtor-Rose Elementary School	484		mom, Mer's BR2	2	2	0.0560	0130	CF PL (2) 26w	LED Retrofit Can Kit, 6 hnch, NLO	2,400	0.11	0.03	0.09	${ }^{269}$	62	206
Roosevelt Schools NY	Wastingtor-Rose Elementary School	485		Office 1074	1	1	0.0534	0.0220	2xx, -2-amp T8	LEED int Diviver Lamps, (2) 4 Lamps	1,152	0.05	0.02	0.03	62	25	36
Rosesevel Schools NY	Wastington-Rose Elementar School	486		Office 1076	1	1	0.0534	0.0220	x4, 2-Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	152	0.05	0.02	0.03	6^{62}	25	36
Roosevelt Schools Mr	Wastington-Rose Elementary School	487		Girss Changing Room 1075	3	3	0.0710	0.0350	$2 \times 2,2$-Lamp 40 Biax	LED Retrofit Panel Kt , 2x2, nLo	600	0.21	0.11	0.11	128	63	65
Roosevelt Schools NY	Wastingor-Rose Elementary School	488		Boys Changing Room 1075	3	3	0.0710	0.0350	2, 2-Lamp 40 Biax	LED Retrofit Panel Kt , 2x2, NLO	600	0.21	0.11	0.11	128	63	${ }^{65}$
Roosevelt Schools Nr	Wastington-Rose Elementar School	489		Uuily 1078	2	2	534	0.0220	1xt, -2-amp T8	LED Int. Divier Lamps, (2) 4 Lamps	750	0.11	. 04	0.06	${ }_{80}$	33	47
Roosevelt Schools Mr	Wastingtor-Rose Elementary School	490		Uulity 1078	2	2	534	0.02	4, 2-L-Lmp T8	LED int. Diver Lamps, (2) 4 Lamps	750	0.11	0.04	0.06	80	33	47
Roosevelt Schools NY	Wastingor-Rose Elementary School	491		Stage 1080	4	4	0.0534	0.0250	1x4, -2-amp T8	Led Standard Wrap, NLO, 1 x4, Jack Chain Mount	750	0.21	0.10	0.11	160	75	${ }^{85}$
Roosevelt Schools NY	Wastington-Rose Elementar School	492		Uuilly 1081	2	2	0.0534	0.0250	1x4, -2-amp T8	LED Standard Wrap, NLo, 1 x4, Jack Chain Mount	750	0.11	0.05	0.06	${ }_{80}$	38	43
Roosevelt Schools NY	Washingtor-Rose Elementar School	493		6ym	16	16	288	0.0870	PL(8) 32w	LED High Bay, 13 K Lumens, 2x2, OSF, We, HCP	2.500	4.61	1.39	3.22	${ }^{11,520}$	3,480	. 040
Roosevelt Schools NY	Wastingtor-Rose Elementary School	494		Gym	25	25	0.2350	0.1000	118, 4-Lamp 5 5 4^{4}	LED Int. Diviver Lamp, (4) 4 T 5 Ho Lamps, Hl	2.500	5.88	2.50	3.38	14,688	6,250	8,438
Roosevelt Schools NY	Wastingon-Rose Elementar School	495		¢ym	7	7	0.1170	0.0500	1x4, 2-Lamp 75 Ho	LED Int. Divier Lamp, (2) 4 T5 Ho Lamps, , H1	2.500	0.82	0.35	0.47	2.048	875	1,173
Roosevelt Schools Mr	Wastingtor-Rose Elementar School	496		Gym	3	3			No Retroft	will Not be Retroft	8,760		.				
Roosevelt Schools NY	Wastingtor-Rose Elementary School	497		Batroom, Women's G I3	2	2	0.0560	0.0130	CF PL (2) 26w	LED Retrofit Can Kit. 6 hnch, NLO	2,400	0.11	0.03	0.09	269	62	206
Roosevelt Schools Nr	Wastingtor-Rose Elementary School	498		Batrrom, Women's Gi3	1	1	0.0534	0.0220	x4, 2-Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	2.400	0.05	0.02	0.03	${ }^{128}$	53	75
Roosevelt Schools Mr	Wastington-Rose Elementar School	499		Bathrom, Women's G/3	2	2	.0.056	0.0130	PL(2) 26w	LED Retrofit Can Kit, 6 hnch, NLO	2,400	0.11	0.03	0.09	${ }^{269}$	62	206
Roosevelt Schools NY	Wastingtor-Rose Elementary School	500		Jc 1082	2	2	0.0534	0.0220	1x4, -2-amp T8	LED int. Diver Lamps, (2) 4 Lamps	750	0.11	0.04	0.06	${ }^{80}$	33	47
Roosevelt Schools Mr	Wastingtor-Rose Elementary School	501		Unilit 1068	6	6	0.0534	0.0220	X4, 2-Lamp T8	LED int. Divier Lamps, (2) 4 Lamps	750	32	0.13	0.19	${ }^{240}$	99	141
Roosevelt Schools Mr	Wastingtor-Rose Elementary School	502		Batroom, Women's	8	8	0.0560	0.0130	PL (2) 26w	LED Retrofit Can Kiti, inch, NLO	2.400	0.45	0.10	0.34	1,075	250	826
Roosevelt Schools NY	Wastingor-Rose Elementary School	503		Batrrom, Mer's	8	8	0.0560	0.0130	CF PL (2) 26w	LED Retrofit Can Kit, 6 nch, NLO	2,400	0.45	0.10	0.34	1,075	250	826
Roosevelt Schools NY	Wastington-Rose Elementar School	504		Halway H11	2	2	0.0350	0.0350	LED Fixure, 35W	will Not be Retroft	400	0.07	0.07		168	168	
Roosevelt Schools NY	Wastingor-Rose Elementary School	505		Hallway H11	3	3	0.0350	0.0350	LED Fixure, 35W	will Not be Retroft	8,753	0.11	0.11		919	919	
Roosevelt Schools NY	Wastington-Rose Elementary School	506		Halway H11	1	1	0.056	0.0130	CF PL (2) 26w	LED Retrofit Can Kit, 6 nch, NLO	2,400	0.06	0.01	0.04	134	31	103
Roosevelt Schools NY	Wastington-Rose Elementar School	507		Halway H11	2	2			No Retroft	will Not be Retroft	8.760						
Roosevelt Schools NY	Wastingor-Rose Elementary School	508		Hallway H12	7	7	0.0310	0.0310	LED Fixure, 1424 BR	will Not be Retroft	2.400	0.22	0.22		521	521	
Roosevelt Schools NY	Wastingtor-Rose Elementary School	509		Hallway H12	4	4	0.0310	0.0220	LED Fixtre, 1424 BR	LEE int Diviver Lamps, (2) 4 Lamps	2,400	0.12	0.09	0.04	298	211	86
Roosevelt Schools NY	Wastingtor-Rose Elementar School	510		Halway H12	1	1	0.0280	0.030	CF PL 26 w	LED Retrofit Can Kit, 6 nch, NLO	2.400	0.03	0.01	0.02	67	31	36
Roosevelt Schools NY	Wastington-Rose Elementary School	511		Hallway H12	10	10	0.0280	0.0220	ED Fixture, 1323 BR	LED int. Diver Lamps, (2) 3 Lamps	2,400	0.28	0.22	0.06	672	528	144
Roosevelt Schools NY	Wastingtor-Rose Elementary School	512		Hallway H11	10	10	0.2350	0.1000	118, 4-4amp 5 5H4	LED Int. Diviver Lamp, (4)4 ${ }^{\text {T } 5 \text { Ho Lamps }}$	3,000	2.35	1.00	1.35	7,050	3,000	4,050
Roosevelt Schools NY	Wastington-Rose Elementary School	513		Hallway H11	3	3			No Retroft	will Not be Retroft	8,760						
Roosevelt Schools NY	Washington-Rose Elementary School			Staimels s1	1	1	0.0620	0.040	LED Fixture, 2444 BR	LED Int. Diviver Lamps, (4)4 Lamps, H1	3,750	0.06	0.04	0.02	233	165	${ }^{68}$
Roosevelt Schools NY	Wastington-Rose Elementary School	${ }_{515}$		Stairwels s1			0.0620	0.040	LED Fixtre, 2444 BR	LED Int Diviver Lamps, (4) 4 Lamps	3,750	0.06	0.04	0.02	233	165	${ }_{68}$

Roosevelt UFSD, N
 Exhibit D-5-1
 ECM 1- LED Lighting and Lighting Controls Upgrade

Site Name	Building Name	Index	Floor	Location	Existing	Proposed	Existing kw	Proposed kw	Existing Description	Proposed Descripion	Total Hours	Total Pre	Total Post	Total	Total KWh Existing	Total kWh Proposed	Total kWh Saved
Roosevelt Schools NY	Washington-Rose Elementary School	516		Stairwels S1	3	3	0.0534	0.022	1x4, -2-amp T8	LED Int. Diviver Lamps, (2) 4 Lamps	3,750	0.16	0.07	0.09	601	248	353
Roosevelt Schools NY	Washingotor-Rose Elementary School	517	sw	Staimels 51	2	2	0.0280	0.0180	CFP PL 26 W	LED Toffer Flat Panel, 2x2, LLO, MM, XL , SM	3,750	0.06	0.04	0.02	210	135	75
Roosevelt Schools NY	Wastington-Rose Elementary School	518	sw	Staimels s1	1	1			No Retroft	vill Not be Reerofit	8,760						
Roosevelt Schools NY	Washington-Rose Elementary School	519		Stairwels s2	1	1	0.0310	0.022	LED Fixure, 2424 BR	LED int. Diviver Lamps, (2) 4 L Lamps, , H1	3,750	0.03	0.02	0.01	116	83	34
Roosevelt Schools NY	Washingon-Rose Elementary School	520	sw	Staimels s^{2}	1	1	0.0310	0.022	LED Fixtre, 24248 BR	LED int. Diviver Lamps, (2) 4 Lamps	3,750	0.03	0.02	0.01	116	83	34
Roosevelt Schools NY	Wastingoto-Rose Elementary School	521	sw	Staimels S^{2}	3	3	0.0534	0.0220	1x4, 2-Lamp T8	LED Int. Divier Lamps, (2) 4 Lamps	3,750	0.16	0.07	0.09	601	248	353
Roosevelt Schools NY	Washington-Rose Elementary School	52	sw	Stairwels s^{2}	1	1	0.0534	0.0220		LED Int. Diviver Lamps, (2) 4 Lamps	3,750	0.05	0.02	0.03	200	83	118
Roosevelt Schools NY	Washington-Rose Elementary school	523	sw	Stairwels s^{2}	2	2			No Retroft	will Not be Retofort	8,760						
Roosevelt Schols NY	Washington-Rose Elementary School	524	sw	Staimels s^{3}	1	1	0.0534	0.022	2xt, --1amp T8	LED Int. Diver Lamps, (2) 4 Lamps, H1	3,750	0.05	0.02	0.03	200	83	118
Roosevelt Schools NY	Washington-Rose Elementary School	525	sw	Stairwels S^{3}	1	1	0	0	1x4, -2-1amp T8	LED Int. Diviver Lamps, (2) 4 Lamps, H1	3750	${ }_{0} 0.054$	0.022	0.0314	200	${ }^{8}$	117.75
Roosevelt Schools NY	Washington-Rose Elementary school	526	sw	Staimels ${ }^{\text {s }}$	5	5	0	0	1x4, 2-1amp T8	LED int. Diviver Lamps, (2) 4 Lamps	3750	0.2670	0.11	0.157	1,001	413	588.75
Roosevelt Schools NY	Wastingotor-Rose Elementary School	527	sw	Stairvels 33	1	1	0	0	2x, 4, -Lamp T8	LED int. Divive Lamps, (4) 4 Lamps	3750	${ }^{0.1057}$	0.044	0.0617	396	165	23.138
Roosevelt Schools NY	Washington-Rose Elementary School	528	sw	Stairmels S^{3}	2	2	0	0	CF PL 26 w	Led Retoroft Can Kit, 41 nch, NLO	3750	0.056	0.014	0.042	210	53	157.50
Roosevelt Schools NY	Washington-Rose Elementary school	529	в	Basement ${ }^{\text {a }}$	47	47	0	0	1x4, 2-1amp T8	Leo int. Diviver Lamps, (2) 4 Lamps	750	2.5098	1.034	1.4758	1,882	76	1,106.85
Roosevelt Schools NY	Washington-Rose Elementary School	530	в	Basement	9	9	0	0	1x4, 2-Lamp T8	LED Int. Diviver Lamps, (2) 4 Lamps	750	0.4806	0.198	0.2826	360	149	211.95
Roosevelt Schools NY	Washington-Rose Elementary School	531	в	Basement	4	4	0	0		LeD int. Diviver Lamps, (2) 4 Lamps, , XL	750	0.2136	0.088	0.1256	160	66	94.20
Roosevelt Schools NY	Wastington-Rose Elementary School	532		Confererce Room	6	6	0	0	CF PL (2) 26w	LED Retrofit Can Kit, 8 nch, , HLO	2200	0.3360	0.102	0.234	39	${ }^{224}$	514.80
Roosevelt Schools NY	Washington-Rose Elementary School	533		New Layout	90	90	.		New Layout	No Retrofit	8760						

Roosevelt UFSD, NY

Exhibit D-5-1
ligh LeD Lighting and Lighting Controls Upgrade

Site Name	Building Name	Index	Floor	Location	Control aty	Total Proposed Load	posed Control De	$\begin{array}{\|c} \text { Proposed } \\ \text { Contaral } \\ \text { Cobacion } \\ \text { Recuction } \end{array}$		$\begin{aligned} & \text { Total } \\ & \text { Hours } \end{aligned}$	Total kWh Existing	Total kWh Proposed	$\underset{\substack{\text { Total kwn } \\ \text { Saved }}}{ }$
Roosevelt Schools NY	Centenial Avenue Elementary School	309		6ym 1064		1.6640	Occ. Sensor, Fixture Mount, PR, Dimming Control	100\%	40\%	2.500	4,160	2.496	${ }^{1.664}$
Rosevelt Schools NY	Roosevelt High School	${ }^{133}$		Practice Room A109b		0.0480	Occ. Sensor, Walswith, DT, 0-10v Dim	100\%	22\%	2.119	102	79	22
Roosevelt Schools NY	Roosevelt High School	148		Administraion Office A110		0.0960	Occ. Sensor, Wallswith, DT, O-100 Dim	100\%	22\%	2.119	203	159	45
Roosevelt Schools NY	Roosevelt tigh School	149		Administration office A110a		0.0480	Occ. Sensor, Walswith, DT, 0-10v Dim	100\%	22\%	2,119	102	79	22
Roosevelt Schools NY	Roosevelt High School	150		Administration office A110b		0.0480	Occ. Sensor, Wallswith, DT, 0.10v Dim	100\%	${ }^{22 \%}$	2,119	102	79	22
Roosevelt Schools NY	Roosevelt tigh School	179		Contro Room		0.0360	Wall Swith, Dimming $\times 2$	100\%	\%	1.760	63	63	
Roosevelt Schools NY	Roosevelt High School	192		Guidance A122		0.2880	Oc. Sensor, Wallswith, DT, 0.10 V D Dim	100\%	10\%	1.440	415	373	${ }_{4}^{41}$
Roosevelt Schools NY	Roosevelt tigh School	193		Guidance A122a		0.0480	Occ. Sensor, Walswith, DT, 0-10v Dim	100\%	10\%	${ }^{1,440}$	69	62	
Roosevelt Schools NY	Roosevelt High School	194		Guidance A122b		0.0480	Occ. Sensor, Wallswith, DT, 0.10v Dim	100\%	10\%	1.440	69	62	
Roseselt Schools NY	Roosevelt tigh School	195		Guidance A122c		0.0480	Occ. Sensor, Wallswith, DT, 0-10v Dim	100\%	10\%	1.440	69	62	
Roosevelt Schools NY	Roosevelt tigh School	196		Guidance A122d		0.0480	Occ. Sensor, Wallswith, DT, 0.10 V V Dim	100\%	10\%	${ }^{1,440}$	69	62	
Roosevelt Schools NY	Roosevelt High School	197		Guidance A122e		0.0480	Occ. Sensor, Wallswith, DT, 0.10 V V Dim	100\%	10\%	1,440	69	62	
Roosevelt Schools NY	Roosevelt High School	198		Guidance A122f		0.0960	Occ. Sensor, Wallswith, DT, 0.10 -10 Dim	100\%	10\%	${ }_{1,440}$	${ }^{138}$	${ }^{12}$	14
Roosevelt Schools NY	Roosevelt tigh School	199		Guidance A122g		0.0480	Occ. Sensor, Wallswith, DT, 0.10 Cov Dim	100\%	10\%	${ }^{1,440}$	69	62	
Roosevelt Schools NY	Roosevelt tigh School	200		Guidance A122h		0.0480	Occ. Sensor, Wallswith, DT, 0.10 Tv D Dim	100\%	10\%	${ }_{1,440}$	69	62	
Roosevelt Schools NY	Roosevelt High School	215		Libray 011 b		0.0480	Oc. Sensor, Wallswith, DT, 0.10 V V Dim	100\%	10\%	3.200	154	138	15
Roosevelt Schools NY	Roosevelt High School	216		Libray 0110		0.0720	Occ. Sensor, Walswith, DT, 0.10v Dim	100\%	10\%	3,200	230	207	${ }^{23}$
Roosevelt Schools NY	Roosevelt High School	219		Schools Store B131		0.0480	Occ. Sensor, Wallswith, DT, 0.10 0vo Dim	100\%	10\%	1.440	69	62	
Roosevelt Schools NY	Roosevelt tigh School	220		Custodian Office B133		0.0480	Occ. Sensor, Wallswith, DT, 0.-10v Dim	100\%	10\%	1.440	69	62	
Roosevelt Schools NY	Roosevelt tigh School	231		Prep Room Al41a		0.0720	Occ. Sensor, Wallswith, DT, 0.10 ov D Dim	100\%	22\%	2,119	153	119	${ }^{34}$
Roosevelt Schools NY	Roosevelt High School	${ }^{235}$		Prep Room A145a		0.0720	Occ. Sensor, Wallswith, DT, 0.0.0v Dim	100\%	22\%	2.119	153	119	34
Roosevelt Schools NY	Roosevelt tigh School	239		Prep Room Al48a		0.0480	Oc. Sensor, Wallswith, DT, 0.10 ov D Dim	100\%	22\%	2,119	102	79	22
Roosevelt Schools NY	Roosevelt tigh School	299		Office 027 e		0.0480	Occ. Sensor, Wallswith, DT, o-10v Dim	100\%	10\%	4,000	192	${ }^{173}$	19
Roosevelt Schools NY	Roosevelt High School	${ }^{331}$		Office 010a		0.0480	Occ. Sensor, Walswith, DT, 0.-10v Dim	100\%	10\%	600	29	26	
Roosevelt Schools NY	Roosevelt tigh School	332		Office 010 b		0.0480	Oco. Sensor, Wallswith, DT, o-10v Dim	100\%	10\%	3,200	154	138	15
Roosevelt Schools NY	Roosevelth tigh School	333		Office 0100		0.0720	Occ. Sensor, Wallswith, DT, 0-10v Dim	100\%	10\%	3,200	230	207	${ }^{23}$
Roosevelt Schools NY	Roosevelt High School	334		Office 010d		0.1440	Occ. Sensor, Wallswith, DT, 0.10 V D Dim	100\%	10\%	3,200	461	415	${ }^{46}$
Roosevelt Schools NY	Roosevelt tigh School	341		Open office 055		0.0480	Occ. Sensor, Walswith, DT, 0-10v Dim	100\%	10\%	3,200	154	138	15
Roosevelt Schools NY	Roosevelt tigh School	342		Open officie 055		0.0480	Occ. Sensor, Wallswith, DT, 0.10 V V Dim	100\%	10\%	3,200	154	138	15
Roosevelt Schools NY	Roosevelt tigh School	${ }^{343}$		Office 055a		0.0560	Occ. Sensor, Wallswith, DT, 0.10v Dim	100\%	10\%	3,200	179	161	18
Roosevelt Schools NY	Roosevelt High School	344		Office 054		0.0480	Oco. Sensor, Wallswith, DT, 0.10V Dim	100\%	10\%	3,200	154	138	15
Roosevelt Schools NY	Roosevelt tigh School	345		Office 055b		0.0480	Occ. Sensor, Wallswith, DT, 0.10v Dim	100\%	10\%	3,200	154	138	15
Roosevelt Schools NY	Roosevelt ligh School	346		Office 058		0.0960	Occ. Sensor, Wallswith, DT, 0.10 V V Dim	100\%	10\%	3,200	307	276	31
Roosevelt Schools NY	Roosevelth tigh School	347		Open officie 056		0.1440	Oc. Sensor, Wallswith, DT, 0.10 V D Dim	100\%	10\%	3,200	461	415	46
Roseselets Schools NY	Roosevelt High School	${ }^{348}$		Office 056a		0.0960	Occ. Sensor, Wallswith, DT, 0-10v Dim	100\%	10\%	3,200	307	276	31
Roosevelt Schools NY	Roosevelt tigh School	352		Staf Room 062		0.0960	Occ. Sensor, Wallswith, DT, 0.10 Cov Dim	100\%	10\%	3,200	307	276	31
Roosevelt Schools NY	Roosevelt tigh School	353		Open officie 064		0.1760	Occ. Sensor, Wallswith, DT, 0.10 V V Dim	100\%	10\%	3,200	563	507	56
Roosevelt Schools NY	Roosevelt High School	355		Office 064d		0.1680	Occ. Sensor, Wallswith, DT, 0.10V Dim	100\%	10\%	3,200	538	484	${ }^{54}$
Roosevelt Schools NY	Roosevelt High School	356		Office 064c		0.0480	Oc. Sensor, Wallswith, DT, 0-10v Dim	100\%	10\%	3,200	154	138	15
Roosevelt Schools NY	Roosevelt High School	357		Office 064b		0.0480	Occ. Sensor, Wallswith, DT, 0.10V Dim	100\%	10\%	3,200	154	138	15
Roosevelt Schools NY	Roosevelt tigh School	358		Office 064c		0.0480	Occ. Sensor, Wallswith, DT, 0.10 V D Dim	100\%	10\%	3,200	154	138	15
Roosevelt Schools NY	Roosevelt tigh School	359		Office 064d		0.140	Occ. Sensor, Wallswith, DT, 0.10 V V Dim	100\%	10\%	3,200	461	415	4
Roosevelt Schools NY	Roosevelt tigh School	360		Open office 066		0.1440	Occ. Sensor, Wallswith, DT, o-10v Dim	100\%	10\%	3,200	461	415	
Roosevelt Schools NY	Roosevelt High School	361		Office 066a		0.0480	Occ. Sensor, Wallswith, DT, 0.10v Dim	100\%	10\%	3,200	154	138	15
Roosevelt Schools NY	Roosevelt tigh School	362		Office 066b		0.0960	Occ. Sensor, Wallswith, DT, 0.10 Cov Dim	100\%	10\%	3,200	307	276	31
Roosevelt Schools NY	Roosevelt High School	363		Office 066		0.0480	Occ. Sensor, Wallswith, DT, 0-10v Dim	100\%	10\%	3,200	154	138	15
Roosevelt Schools NY	Roosevelt tigh School	365		Ofice 064e		0.0240	Oc. Sensor, Wallswith, DT, 0.10 V V Dim	100\%	10\%	3,200	77	69	
Roosevelt Schools NY	Roosevelt tigh School	366		Open office 057		0.3840	Occ. Sensor, Walswith, DT, 0.10v Dim	100\%	10\%	3,200	1,229	1,106	${ }^{123}$
Roosevelt Schools NY	Roosevelt tigh School	367		Office 057a		0.0480	Oco. Sensor, Wallswith, DT, o-10V Dim	100\%	10\%	3,200	154	138	15
Roosevelt Schools NY	Roosevelt tigh School	371		Office 057d		0.0480	Occ. Sensor, Wallswith, DT, 0.-10v Dim	100\%	10\%	3,200	154	138	
Roosevelt Schools NY	Roosevelt tigh School	372		Open office e 54		0.1440	Occ. Sensor, Wallswith, DT, o-10v Dim	100\%	10\%	3,200	461	415	46
Roosevelt Schools NY	Roosevelt tigh School	${ }^{373}$		Office 054a		0.0480	Occ. Sensor, Wallswith, DT, 0-10v Dim	100\%	10\%	3,200	154	${ }^{138}$	15
Roseselets Schools NY	Roosevelt High School	374		Office 054b		0.0480	Occ. Sensor, Wallswith, DT, 0-10v Dim	100\%	10\%	3,200	154	138	15
Roosevelt Schools NY	Roosevelt tigh School	375		Office 054c		0.0480	Occ. Sensor, Wallswith, DT, 0.10 V D Dim	100\%	10\%	3,200	154	138	15
Roosevelt Schools NY	Roosevelt tigh School	376		Open office 053		0.0640	Occ. Sensor, Wallswith, DT, 0.10 V V Dim	100\%	10\%	3,200	205	184	20
Roosevelt Schools NY	Roosevelt High School	378		Office 053a		0.0720	Occ. Sensor, Wallswith, DT, 0.10 V Dim	100\%	10\%	3,200	230	207	${ }^{23}$

Roosevelt UFSD, NY

Exhibit D-5-1
Lighting Controls Line by Lighting Controls Upgrade

Site Name	Buiding Name	Index	Floor	Location	Control aty	Total Proposed Load	Proposed Control Description	$\begin{array}{\|c} \text { Proposed } \\ \text { Contaral } \\ \text { Cobacion } \\ \text { Recuction } \end{array}$		$\begin{aligned} & \text { Total } \\ & \text { Hours } \end{aligned}$	Total kWh Existing	Total kWh Proposed	$\underset{\substack{\text { Total kwn kne } \\ \text { Saved }}}{ }$
Roosevelt Schools NY	Roseveltt High School	379		Office 053b		0.0960	Occ. Sensor, Wallswith, DT, 0-10v Dim	100\%	10\%	3,200	307	276	${ }^{31}$
Roosevelt Schools NY	Roosevelth tigh School	380		Office 053c		0.0960	Oc. Sensor, Wallswith, DT, 0-10v Dim	100\%	10\%	3,200	307	276	31
Roosevelt Schools NY	Roosevelth tigh School	381		Open Office 051		0.1280	Oc. Sensor, Wallswith, DT, 0.0.00 Dim	100\%	10\%	3,200	410	369	41
Roosevelt Schools NY	Roosevelth tigh School	385		Office 051 Exam1		0.0480	Occ. Sensor, Wallswith, DT, 0-10v Dim	100\%	10\%	3,200	${ }_{154}$	${ }^{138}$	${ }^{15}$
Roosevelt Schools NY	Roosevelt tigh School	386		Office Np		0.0240	Occ. Sensor, Walswith, DT, 0-10v Dim	100\%	10\%	3,200	77	69	
Roosevelt Schools NY	Roosevelth tigh School	387		Social Work		0.0480	Occ. Sensor, Walswith, DT, 0-10v Dim	100\%	10\%	3,200	154	138	${ }^{15}$
Roosevelt Schools NY	Roosevelt tigh School	391		Open Office 015		0.1440	Oc. Sensor, Wallswith, DT, 0.00v Dim	100\%	10\%	3,200	461	415	${ }^{46}$
Roosevelt Schools NY	Roossevelt tigh School	393		Office 015c		0.0480	Occ. Sensor, Walswith, DT, 0-10v Dim	100\%	10\%	3,200	154	138	15
Roosevelt Schools NY	Roosevelt High School	394		Office 0 15b		0.0480	Occ. Sensor, Walswith, DT, 0-10v Dim	100\%	10\%	3,200	54	${ }^{138}$	15
Roseselt Schools NY	Rooseselth tigh School	395		Office 015d		0.0480	Occ. Sensor, Walswith, DT, 0-10v Dim	100\%	10\%	3,200	154	138	15
Roosevelt Schools NY	Roosevelth tigh School	416		Noc Room		0.0480	Oc. Sensor, Wallswith, DT, 0-100 Dim	100\%	10\%	3,200	154	138	15
Roosevelt Schools NY	Roosevelt tigh School	47		Noc Room		0.0480	Oc. Sensor, Wallswith, DT, 0-100 Dim	100\%	10\%	3,200	154	${ }^{138}$	15
Roosevelt Schools NY	Roosevelth tigh School	418		Noc Room		0.2640	Oc. Sensor, Wallswith, DT, 0-0.00 Dim	100\%	10\%	3,200	845	760	${ }^{84}$
Roosevelt Schools NY	Rooseselt tigh School	424		Office 038		0.0640	Occ. Sensor, Walswith, DT, 0-10v Dim	100\%	10\%	3,200	205	184	20
Roosevelt Schools NY	Roosevelth tigh School	426		Office 038e		0.0220	Occ. Sensor, Wallswith, DT, 0-100 Dim	100\%	10\%	3,200	70	63	
Roosevelt Schools NY	Roosevelth tigh School	427		Office 038b		0.0480	Oc. Sensor, Wallswith, DT, 0-100 Dim	100\%	10\%	3,200	154	${ }^{138}$	15
Roosevelt Schools NY	Roosevelth tigh School	428		Office 038d		0.0960	Oc. Sensor, Wallswith, DT, 0-10v Dim	100\%	10\%	3,200	307	276	31
Roosevelt Schools NY	Roosevert tigh School	429		Office 038c		0.0440	Oc. Sensor, Wallswith, DT, 0.10v Dim	100\%	10\%	3,200	141	127	14
Roosevelt Schools NY	Roosevelth tigh School	${ }^{431}$		Ann Gym 40		3.4080	Occ. Sensor, Fixture Mount, PR, Dimming Control	100\%	45\%	3,832	13,559	7,183	5.877
Roosevelt Schools NY	Roosevelt tigh School	450		Gym 033		6.0120	Oc. Sensor, Fixture Mount, PR, Dimming Control	100\%	45\%	3.832	23,038	12.671	${ }^{10,367}$
Roosevelt Schools NY	Roosevelt tigh School	33		Storage St1		0.0720	Oc. Sensor, Wallswith, DT, 0-10v Dim	100\%	10\%	750	54	49	
Roosevelt Schools NY	Roosevelt High School	${ }^{34}$		Conference Room		0.0720	Occ. Sensor, Walswich, DT, 0-10v Dim	100\%	10\%	1.000	72	65	
Roosevelt Schools NY	Roosevelt High School	${ }^{37}$		Classroom A222c		0.2160	Occ. Sensor, Walswith, DT, 0-10v Dim	100\%	22\%	2,119	458	${ }^{357}$	101
Roosevelt Schools NY	Roosevelth tigh School	48		Classroom 8233		0.0720	Occ. Sensor, Walswith, DT, 0-10v Dim	100\%	22\%	2,119	${ }^{153}$	119	34
Roosevelt Schools NY	Roosevelt tigh School	54		Pree Room 8241 a		0.0720	Oc. Sensor, Wallswith, DT, 0-10v Dim	100\%	22\%	2.119	153	119	${ }^{34}$
Roosevelt Schools NY	Roosevelth tigh School	97		Classroom C267		0.0720	Occ. Sensor, Walswith, DT, 0-10v Dim	100\%	22\%	2,119	153	119	${ }^{34}$
Roosevelt Schools NY	Rooseveret tigh School	${ }^{98}$		Classroom C267a		0.0480	Oc. Sensor, Wallswith, DT, 0-100 Dim	100\%	22\%	2.119	102	79	22
Roosevelt Schools NY	Roosevelth tigh School	99		Classroom C267b		0.0480	Occ. Sensor, Walswith, DT, 0-10v Dim	100\%	22\%	2,119	102	79	22
Roosevelt Schools NY	Roosevelth tigh School	100		Classroom C267c		0.0480	Oc. Sensor, Walswith, DT, 0-100 Dim	100\%	22\%	2,119	102	79	${ }^{22}$
Roosevelt Schools NY	Roosevelth tigh School	124		Pree Room A103a		0.0720	Oc. Sensor, Wallswith, DT, 0-10v Dim	100\%	22\%	2,119	153	119	34
Roosevelt Schools NY	Roosevel Mididle School	400		©ym		3.4080	Occ. Sensor, Fixtur Mount, PR, Dimming Control	100\%	40\%	3,221	10,977	, 586	4,391
Roosevelt Schools NY	Rosevelt Mididle School	479		Cafeteria		0.0800	VendingMiser Snack Machine Control	100\%	40\%	8.760	701	420	280
Roosevelt Schools NY	Roosevel Midide School	480		Cafeerer		0.3400	VendingMiser Cold Dinik Mactine Control	100\%	34\%	8.760	2,978	1,966	1.01
Roosevelt Schools NY	Ulysses Byas Elementary School	100		6ym		2.0880	Oc. Sensor, Fixture Mount, PRR, Dimming Control	100\%	40\%	2.500	5.220	3.132	2.088
Roosevelt Schoos NY	Wastington-Rose Elementary School	493		bym		1.3920	Oc. Sensor, Fixture Mount, PR, Dimming Control	100\%	40\%	2,500	3.480	2.088	1,392

Roosevelt UFSD, NY
 Exhibit D-5 Chart

Boiler Efficiency Spreadsheet

Existing												
Building	Equipment Label	aty	Location	Boiler(s) Replaced $[y / N]$	Add Burner Controls / Replace (Y/N)	Existing fuel	Manufacturer	Model No .	Total Input	Heating Medium	Combustion Efficiency	Percentage of Building Served
Centennial Avenue Elementary School	CA-B1,2	2	Boiler Room	N	N	Natural Gas	HB Smith	28 A	9,034	Hot Water	80\%	100\%
Washington-Rose Elementary School	WR-B1,2	2	Boiler Room	r	N	Natural Gas	HB Smith	28HE	8,586	Hot Water	82\%	100\%
Ulysses Byas Elementary School	UBBB1,2	2	Boiler Room	N	N	Natural Gas	HB Smith	28HE	8,586	Hot Water	82\%	100\%
Roosevelt Middle School	RM-81	1	Boiler Room	r	N	Natural Gas	HB Smith	28HE	4,293	Hot Water	82\%	33\%
Roosevelt Middle School	RH-82,3	2	Boiler Room	r	N	Natural Gas	HB Smith	28HE	8,586	Hot Water	82\%	67\%
Roosevelt High School	RH-81,2,3	3	Boiler Room	r	N	Natural Gas	HB Smith	28HE	12,879	Hot Water	82\%	100\%
Totals		12							51,964			

PROPOSED										
Building	Equipment Label	$\left\lvert\, \begin{gathered} \text { Boiler(s) } \\ \text { Replace }[1 / N / N] \end{gathered}\right.$	aty	Proposed fuel	Manufacturer	Model No.	$\begin{gathered} \text { Total Input } \\ \text { Capacity }[\text { MBH] } \end{gathered}$	Heating Medium	Combustion Efficiency	Percentage of Building Served
Washington-Rose Elementary School	WR-B1,2	r	2	Natural Gas	Aerco	Array 4000	8,000	Hot Water	90.0\%	100.0\%
Roosevelt Middle School	RM-81	r	1	Natural Gas	Riello	Array 4000	4,000	Hot Water	90.0\%	33.\%
Roosevelt Middle School	RH-82,3	r	2	Natural Gas	Riello	Array 4000	8,000	Hot Water	90.0\%	67.0\%
Roosevelt thigh School	RH-81,2,3	r	4	Natural Gas	Riello	Array 4000 \& 3000	15,000	Hot Water	90.0\%	100.0\%
Totals			9				35,000			

Roosevelt UFSD, N

Exhibit D-5 Chart

EXISTING OVERALL BOILER EFFICIENCY

Builing	Centennial Avenue Elementary School		Ulysses Byas Elementary School	Roosevelt Middle School	Roosevelt Middle School	Roosevelt High School
Location	Boiler Room					
Label	CA-B1,2	WR-B1,2	UB-B1,2	RM-81	RH-82,3	RH-81,2,3
Capacity [$\mathrm{MBTU} / \mathrm{Hr}$]	9,034	8,586	8,586	4,293	8,586	12,879
Quantity						
Existing fuel	Natural Gas					
Percentage of Building Load [\%]	100\%	100\%	100\%	33\%	67\%	100\%
Heating Medium	Hot Water					
Combustion Efficiency $\%$ \%	80.\%	8.0\%	82.\%	82.\%	82.\%	82.0\%
Losses Due to Radiation [\% of MCR]	1.0\%	1.0\%	1.0\%	1.0\%	1.0\%	1.0\%
Losses Due to Blowdown [\% of MCR]	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
MCR of Boilers [MMBTU/Hr]	9.0	8.6	8.6	4.3	8.6	12.9
\% Makeup Water [\%]	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	8.0\%
Makeup T.D.S. [PPM]	80	80	${ }^{80}$	80	80	80
Blowdown T.D.S. (PPM)	3,500	3,500	3,500	3,500	0	50
Annual Boiler Usage [MMBTU]	3,199	5,098	5,186	2,477	5,029	8,707
Feedwater Temperatur [$\left[^{\circ}\right]$	180	180	180	180	180	180
Condensate Return Temperature [$\left.{ }^{\circ} \mathrm{F}\right]$	200	200	200	200	200	200
Makeup Water Temperature [${ }^{\circ} \mathrm{F}$]	60	60	60	60	60	60
Hours of Operation [Hrs/Mr]	4,016	4,016	4,016	4,016	4,016	4,016
Blowdown Temperature [$\left.{ }^{\circ} \mathrm{F}\right]$	220	220	220	220	22	220
Heat Required to Raise al of fteam [BTU/\|l]	980	980	980	980	980	980
Boiler Load Rate $\%$	50.0\%	50.0\%	50.0\%	50.0\%	50.0\%	50.0\%
Present Blowdown Rate [lbs/lb Steam]						
Heat Content of Blowdown [BTU//b]				-	-	
Blowdown Loss $\%$	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Radiation Losses [\%]	1.0\%	1.0\%	1.0\%	1.0\%	1.0\%	1.0\%

Roosevelt UFSD, NY

Exhibit $\mathrm{D}-\mathrm{C}$ Chart
Boiler Efficiency Spreadsheet
PROPOSED OVERALL BOILER EFFICIENCY

	$\begin{gathered} \text { Centennial } \\ \text { Avenue } \\ \text { Elementary } \\ \text { School } \end{gathered}$	$\begin{array}{c\|} \hline \text { Washington- } \\ \text { Rose } \\ \text { Elementary } \\ \text { School } \end{array}$	Ulysses Byas Elementary Schoo	Roosevelt Middle School	Roosevelt Middle School	Roosevelt High School
Boile Addition	N	r	N	r	r	r
Burner Control Links	N	N	n	N	N	N
Location	Boiler Room					
Label		WR-B1,2		RM-B1	RH-B2,3	RH-81,2,3
Quantity to be Replaced					${ }^{2}$	
Percent of Building Load [\%]	-	100\%	-	33\%	67\%	100\%
Proosed fuel		Natural Gas		Natural Gas	Natural Gas	Natural Gas
Capacity [MBTU/Hr]		8,000		4,000	8,000	15,000
Heating Medium	-	Hot Water	-	Hot Water	Hot Water	Hot Water
Combustion Efficiency [$\%$]		90.\%		90.0\%	90.0\%	90.0\%
Losses Due to Radiation [\% of MCR]	1.0\%	1.0\%	1.0\%	1.0\%	1.0\%	1.0\%
Losses Due to Blowdown [\% of MCR]	2.0\%	0.0\%	2.0\%	0.0\%	0.0\%	0.0\%
\% Makeup Water [\%]	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	8.0\%
мakeup T. D.S. ([PM)	${ }^{80}$	${ }^{80}$	\%	80	80	80
Blowdownt.d.S. [PPM)	3,500	3,500	3,500	3,500	3,500	3,500
Annual Boiler Usage [MMBTU]	.	5,098		2,477	5,029	8,707
Feedwater Temperature [$\left.{ }^{\circ}\right]$	180	180	180	180	180	180
MCR of Bioler [MMBTU/Hr]		8.0		4.0	8.0	15.0
Condensate Return Temperature $\left[{ }^{\circ}\right]$	200	200	200	200	200	200
Makeup Water Temperature [$\left.{ }^{\circ}\right]$	60	60	60	60	60	60
Hours of Operation [Hrs/ $/ \mathrm{r}]$	4,016	4,016	4,016	4,016	4,016	4,016
Blowdown Temperature [${ }^{\circ}$]	220	220	220	220	220	220
Heat Required to Raise a lb of steam [BTV//b]	980	980	980	980	980	980
Boiler Load Rate [\%]		50.\%		50.\%	50.0\%	50.0\%
Present Blowdown Rate [lbs/lb Steam]			-			
Heat Content of Blowdown [BTU//b]	-		-	-	-	
Blowdown Loss [\%]	-	0.0\%		0.0\%	0.0\%	0.0\%
Radiation Losses [\%]	-	1.0\%	\cdot	1.0\%	1.0\%	1.0\%
*Overall Boiler Efficiency [\%]	79.0\%	89.0\%	81.0\%	89.0\%	89.0\%	89.0\%

[^0]
Roosevelt UFSD, N
 xhibit D-5-2

ECM 2 - Boiler Plant Upgrades
ECM DESCRIPTION
Install new high efficiency boilers to optimize plant efficiency and reduce equipment maintenance costs.
DATA/ ASSUMPTIONS
Heating Season Hours 4.016 Hours

* In adialustited baseline is used for the boiler baseline usage as to onot double-dip on savings
commissioning
Verify all aspects of boile operation including controls and safety measures. Verify air/fuel ratio is consistent throughout firing range. Provide training of the boiler operators.
RECOVERY/SAFETY FACTOR
Thermal Safety Factor $[\%]=$
A safety factor of 5% is used to account for parameter variability
formulae

Variable	\|Units	Description
$Q_{\text {Suvings }}$	Therms	Thermal Savings
new	\%	Efficiency of New Boiler
not	\%	Efficiency of Old Boiler
Fuel ${ }_{\text {AOD }}$	Therms	Adjusted Boiler Fuel Usage

Roosevelt UFSD, N
 Exhibit D-5-2

ECM 2 - Boiler Plant Upgrades
*nnouts are blue

Building	Label	Boilers to be Added
Washington-Rose Elementary School	WR-B1,2	
Roosevelt Middle School	RM-B1	
Roosevelt Middle School	2,3	
Roosevelt High School	RH-81,2,3	
Totals		

CALCULATIONS

	Washington-Rose Elementary School	Roosevelt Middle School	$\underset{\substack{\text { Roosevelt Middle } \\ \text { School }}}{ }$	Roosevelt High School
No. of Units to be Replaced	${ }^{2}$	1	2	
Fuel switch	N	N	N	N
Existing fuel	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Proposed fuel	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Existing Boiler Efficiency [\%]	81.0\%	81.0\%	81.0\%	.0\%
Proposed Boile Efficiency ${ }^{\text {\% }}$ \%	89.\%	89.0\%	89.0	89.0
Improvement in Boiler Efficiency $[\%]$	8.0\%	8.0\%	8.0\%	8.0\%
Annual Boile Fuel Use [Therms]	50,985	24,770	50,291	87,073
Adiusted Boiler Usage [Therms]	48,842	23,906	48,537	82,919
Percentage of Building Load [\%]	100\%	33\%	67\%	100\%
Safety Factor [\%]	20\%	20\%	20\%	20\%
Thermal Savings [Therms)	3,859	1,889	3,835	6,5.5

Notes:
Replacing the existing boilers with new, high efficiency units will reduce operating costs at this location.
Note that the boiler efficiency discussed here is the overall boiler thermal efficiencry, not ust its combustion efficiency. The value of this number will be much lower than for combustion efficiency alone as it includes losses from radiation, blowdown, and other related losses. The value for annual boile fuel has been adjusted for the effect of other ECM

savings summary

Building ID	kWh Savings	kW Savings	Thermal Savings	Safety Factor
	kwh	kw	Therms	\%
Centennial Avenue Elementary School				0.0\%
Washington-Rose Elementary School			3,859	20.0\%
Ulysees Byas Elementary School				0.0\%
Roosevelt Middle School			5,724	20.0\%
Roosevelt High School			6,552	20.\%
Subtotal			16,135	

Exhibit D-5-2
ECM 2 - Boiler Plant Upgrades

ECM DESCRRITION

Switch third party natural gas suppliers
DATA / ASSUMPTIONS
Estimated cost of Natural Gas based on baseline rates of Centennial Avenue School National Grid supplier rate.

RECOVERY/SAFETY FACTOR

Thermal Safety Factor [\%] =

CALCULATIONS

Roosevelt UFSD, NY
xhibit D-5-2
ECM 2 - Boiler Plant Upgrades
ECM DESCRIPTION
Utility Billing error correction. Remove State Sales Tax from the bill.
DATA/ASSUMPTIONS
None

CALCULATION

Roosevelt UFSD, NY
 Exhibit D-5 Chart Domestic Hot Water Chat

"nputs are blue ${ }^{}$ *f Domestic Hot Water is fed off boiler put " Y " in Column F and put the respective boiler equipment label in Column C

ExISting												
Building	Equipment label	aty	Location	Fed Off Boiler	$\begin{aligned} & \text { Replace } \\ & \text { DHW } \end{aligned}$	Fuel	Manufacturer	Model No .	Capacity [MBH]	Capacity (Gal)	Combustion Efficiency [\%]	Percentage of Building DHW Load
Washington-Rose Elementary school	WR-DHW1	2	Boiler Room	N	r	Natural Gas	AO Smith		365	119	80\%	100\%
Roosevelt High School	RH-DHW1	2	Boiler Room	N	r	Natural Gas	Lochinvar		1,500	-	80\%	100\%
Totals		4							1,865			

PROPOSED								
Building	aty	Fuel	Manufacturer	Model No .	Capacity [MBH]	Combustion Efficiency [\%]	Fed Off Boiler (Y / N)	Capacity (Gal)
Washington-Rose Elementary School	${ }^{2}$	Natural Gas	AO Smith	1T-300	N/A	89.0\%	r	${ }^{80}$
Roosevelt tigh School	2	Natural Gas	AO Smith	17-600	N/A	89.0\%	r	158
	4							

EXISTING DHW EFFIIIENCY

Building	$\begin{array}{\|l\|} \hline \text { Washington- } \\ \text { Rose } \\ \text { Elementary } \\ \text { Schoool } \end{array}$	Roosevelt High School
Label	WR-DHW1	RH-DHW1
Quantity	2	2
Location	Boiler Room	Boiler Room
Fuel Type	Natural Gas	Natural Gas
Capacity (MBTU)	365	1,500
Percentage of Building Load	100\%	100\%
Current Efficiency	80.0\%	80.0\%

PROPOSED DHW EFFICIENCY

	$\begin{array}{\|c\|} \hline \text { Washington- } \\ \text { Rose } \\ \text { Elementary } \\ \text { School } \end{array}$ School	Roosevelt High School
DHW Replacement	Y	r
Isolate Storage Tank	N	N
Label	WR-DHW1	RH-DHW1
Fuel Type	Natural Gas	Natural Gas
Quantity	2	2
Location	Boiler Room	Boiler Room
Capacity (MBTU)	N/A	N/A
Proposed Efficiency	89.0\%	89.0\%

Rooseveelt UFSD, N
 ECM 3- DHW Heater Upgrade

ECM DESCRIPTION
Existing domestic hot water heater(s) will be replaced with indirect heaters fed by the Heating Hot Water Boilers.
DATA / ASSUMPTIINS
Current DHW Heater Efficiency
COMMISSIONING
Verify all equipment is istalled properly and working as designed

RECOVERY/SAFETY FACTOR
Thermal Safety Factor $[\%]=0$

ohw repplacement calculation

$Q_{\text {suings }}=$ Fuel $_{\text {ofw }}-\left(\right.$ (Fuel $\left.\left.l_{\text {ofw }} \cdot n_{\text {ool }}\right) /\left(n_{\text {New }}\right)\right)$
$\mathrm{S}_{\mathrm{TOO}}=\left(\mathrm{F}_{\mathrm{ADO}} \cdot \mathrm{Fe}_{0} \cdot \mathrm{C}_{\mathrm{FO}}\right)-\left(\mathrm{F}_{\mathrm{ADO}, \mathrm{NG}} \cdot \mathrm{C}_{\mathrm{NG}}\right)$

Variable	Uunits	Descripition
$Q_{\text {Suvings }}$	Therms	Thermal Savings
$n_{\text {new }}$	\%	Efficiency of Proposed DHW Heater
noto	\%	Efficiency of Existing DHw Heater
Fuelohw	Therms	Annual DHW Fuel Consumption
$\mathrm{FAOD}_{\text {Fo }}$	Gallons	Adjusted Boiler Usage in Gallons (Fuel Oil)
$\mathrm{FaOD}_{\text {AJg }}$	Therms	Adjusted Boiler Usage in Therms (Natural Gas)
C_{50}	\$/Gallon	Existing Cost of fuel Oil
$\mathrm{c}_{\text {NG }}$	\$/Therm	Proposed Cost of Natural Gas
STor	\$	Fuel Conversion Savings

*nputs are blue

ding	Label	DHW Quantity	Existing fuel	$\begin{aligned} & \text { Proposed } \\ & \text { Fuol } \end{aligned}$	Existing Efficiency	Proposed Efficiency	$\begin{array}{\|c\|} \% \text { of Building } \\ \text { Load } \end{array}$	Indirect DHW HEX Quantity
Washington-Rose Elementary School	WR-DHW1	2	Natural Gas			89.0\%	100\%	
Roosevelt High School	RH-DHW1	2	Natural Gas	Natural Gas	80.\%	89.0\%	100\%	
Totals								

nosevelt UFSD,
 Exhibit D-5-3
 ECM 3- DHW Heater Upgrad

A. REPLACE EXISTING DOMESTIC HOT WATER HEATER

	Washington-Rose Elementary School WR-DHW1	Roosevelt High School
${ }_{\text {L }}^{\text {Label }}$	WR-DHW1	RH-DHW1
Quant	${ }^{2}$	2
Fuel swich	${ }^{\text {N }}$	${ }^{\text {N }}$
Existing fuel	Natural Gas	Natural Gas
Proposed fuel	Natural Gas	Natural Gas
Current DHW System Efficiency $\%$ \%	80.0\%	80.0\%
Proosed DHW System Efficiency $[\%]$	89.\%	89.0\%
Improvement DHW System Efficiency [\%]	9.0\%	9.0\%
Annual DHW Heater Baseline [Therms]	583	${ }^{4,583}$
Percentage of DHW Building Load [\%]	100\%	100\%
Safety Factor	0\%	0\%
Thermal Savings [Therms)	271	463

SAVINGS SUMMARY

Building ID	kWh Savings	kW Savings	Thermal Savings	Fuel Switch Savings	$\begin{array}{\|c\|} \hline \text { Thermal } \\ \text { Safety Factor } \\ \hline \end{array}$	
	kWh	kw	Therms	\$	\%	\%
Centennial Avenue Elementary School	-		-	\$.	0.0\%	0.0\%
Washington-Rose Elementary School	-	-	271	\$.	0.0\%	0.0\%
Ulysees Byas Elementary School	-	-	-	\$.	0.0\%	0.0\%
Roosevelt Midalle School	-	-	-	\$.	0.0\%	0.0\%
Roosevelt tigh School	-		463	\$.	0.0\%	0\%
Subtotal	.	.	735	.		

Roosevelt UFSD, NY

Varibitle Frequency Drives and Motor Table
VARIABLE FREQUENCY DRIVE AND MOTOR TABLE
*Inputs are blue

VARIABLE FREQUENCY DRIVE AND MOTOR TABLE							
Building	Equipment Label	$\begin{array}{c}\text { Equipment } \\ \text { Configuration }\end{array}$	aty	$\begin{gathered} \text { Total } \\ \text { Horsepower } \\ {[H P]^{*}} \end{gathered}$	$\begin{array}{\|c\|} \text { Existing } \\ \text { Efficiency [\%] } \\ \hline \end{array}$	$\begin{gathered} \hline \text { Replace } \\ \text { Motor } \\ (\mathrm{Y} / \mathrm{N}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Install VFD } \\ & (\mathrm{V} / \mathrm{N}) \end{aligned}$
Centennial Avenue Elementary School	CEs-CWP-1,2	Lead/Lag	2	30.0	83.0\%	r	r
Totals				30.0			

	$\begin{aligned} & \text { Centennial } \\ & \text { Aevuene } \\ & \text { Elementary } \\ & \text { School } \end{aligned}$
Equipment Label	CES-CwP-1,2
Equipment Configuration	Lead/L
Quantity	2
Horsepower [$\mathrm{HP]}$	30.0
Existing Efficiency [\%]	83.0\%
Replace Motor	r
Instal VFD	

Roosevelt UFSD, N

ECM 4- Mechanical Upgrade
ECM DESCRIPTION
Install Variable Frequency Drives (VFDS) to modulate speed based on actual demand.
DATA / ASSUMPTIONS
Motor Load Factor [\%]
*Run hours are based on the audit and through interviews with facility staff

COMMISSIONING

RECOVERY/SAFETY FACTOR
Electric Safety Factor $[\%]=$
FORMULAE

Variable	Units	Descripion
$\mathrm{w}_{\text {Motorsavins }}$	kWh	Electrical Savings for Motor Replacement
нр	нр	Horsepower of motor
texsing	Hrs	Existing Run Hours
traposse	Hrs	Proposed Run Hours
Lf	\%	Load Fattor of motor
nexsting	\%	Existing efficiency of motor
$n_{\text {Praopose }}$	\%	Proposed efficiency of motor
2^{50}	-	Summation of all frequences (0 Hzz to 60 Hz)
	\%	Frequency of drive, as a percentage of full frequency (60 Hz)
t_{5}	\%	Percentage of time motor will run at a particular frequency
nveo	\%	VFD efficiency
$\mathrm{w}_{\text {vfo }}$	kWh	Proposed electrical consumption with VFD
$\mathrm{w}_{\text {ExSting }}$	kwh	Existing electrical consumption of motor
$\mathrm{w}_{\text {Prooosio }}$	kWh	Proposed electrical consumption of motor

Roosevelt UFSD, NY
 ECM 4- Mechanical Upgrade
 VFD \& Motor Replacement
 ASSUMPTIONS/INPUTS

Inputs are in blue

Building	Equipment label	Configuration	aty	$\begin{gathered} \text { Horsepoweı } \\ {[H P]} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Existing } \\ \text { Efficiency [\%] } \end{array}$	$\begin{aligned} & \text { Replace } \\ & \text { Motor } \end{aligned}$	Install VFD
Centennial Avenue Elementary School	CES-CWP-1,2	Lead/Lag	2	30.0	83.0\%	r	r
Total							

CALCULATIONS (MOTOR)

	Centennial Avenue Elementary School
Equipment Label	CES-CWP-1,2
Equipment Configuration	Lead/ag
Replace Motor	r
Installved	r
Quantity	2
Existing Motor Horsepower [HP]	30.0
Proposed Motor Horsepower [HP]	30.0
Existing Run Hours [Hrs]	${ }^{824}$
Proposed Run Hours [Hrs]	${ }^{531}$
Load Factor [\%]	65.0\%
Existing Motor Efficiency [\%]	83.0
Proposed Motor Efficiency Y \%]	93.6\%
Existing kw [kw]	17.53
Proposed kw [kw]	15.54
Existing Motor kWh Consumption [kWh]	14,43
Proposed Motor kWh Consumption w/o ved [kWh]	8,250
Proposed Motor kWh Consumption w/ VFD [kWh]	4,583
Electric Safety Factor [\%]	0\%
kW Savings [kW]	1.98
kWh Saving [kWh]	9,855

Roosevelt UFSD, N

Exhibit D-5-4
ECM 4- Mechanical Upgrade
motor run percentages at respective speed

30%	0%
40%	0%
50%	12%
66%	12%
70%	22%
80%	29%
90%	20%
100%	5%
Total	100%

KWH CONSUMPTION W/ VED

KW LOAD AT VARIOUS SPEEDS

SAVINGS SUMMARY

Building ID	kWh Savings	kW Savings	$\begin{array}{\|c} \hline \text { Electric Safety } \\ \text { Factor } \\ \hline \end{array}$
	kwh	kw	\%
Centennial Avenue Elementary School	9,855	1.98	0.0\%
Washington-Rose Elementary School	-	-	0.0\%
Ulysses Byas Elementary School	-		0.0\%
Roosevelt Midall School	-	-	0.0\%
Roosevelt tigh School			0.0\%
Subtotal	9,855	1.98	

Roosevelt UFSD, N

Exhibit D-5 Chart
Condensing Unit Replacement Chart

ExIsting								
Building	Equipment Label	aty	$\begin{aligned} & \text { Replalace } \\ & (\gamma / N) \end{aligned}$	Manufacturer	Model No.	Area Served	$\begin{gathered} \text { Capacity } \\ \text { [Tons] } \end{gathered}$	Existing EER
Roosevelt Midalle School	Chiller $2 \&$ chiller 3	${ }^{3}$	r	McQuay		Entire Building	375.0	12.0
Ulysses Byas Elementary School	RTU	26	r	McQuay		Entire Building	325.0	12.0
Centennial Avenue Elementary :	1 T closet	3	r			ITCloset	6.0	10.0
Roosevelt Middle School	${ }^{17}$ closet	2	r			ITCloset	4.0	10.0
Totals		34					710.0	

Proposed				
Manufacturer			Capacity	Proosesd
	Model No.	Qty	[Tons]	
		3	375.0	13.0
		26	325.0	13.0
		3	6.0	13.0
		2	4.0	13.0
		34	710.0	

EXISTING CONDENSING UNIT SPECIFICATIONS

Building	Roosevelt Middle Schoo	Ulysses Byas Elementar School		Roosevelt Middle Schoo
	Chiller 2 \&	RTU	TTloset	IT Closet
	Entire	Entire	TTloset	TClos
rea Serving	Building	Suildin	${ }^{1 T}$ closet	Tloset
Quantity	3	26	3	2
apacity (Tons)	375.0	325.0	6.0	4.0
Existing EER	12.0	12.0	10.0	10.0

PROPOSED CONDENSING UNIT SPELIFICATIONS

	$\begin{array}{\|l\|l\|} \hline \text { Roosevevelt } \\ \text { Middde } \\ \text { School } \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { Elentanary } \\ \text { School }} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Centennial } \\ & \text { Avenue } \\ & \text { Elementary } \\ & \text { School } \end{aligned}$	Roosevelt Middle School
cu Replacement Label	r	r	Y	
	$\begin{aligned} & \text { Chiller 2\& } \\ & \text { Chiller 3 } \end{aligned}$	RTU	it	IT Closet
	Entire	Entire	ITClo	IT Closet
Quantity	3	26		2
Tonnage	375.0	325.0	6.0	4.0
Propos	13.0	13.0	13.0	13.0

Roosevelt UFSD, N

ECM 4 - Mechanical Upgrade
Condensing Unit Replacemen

ECM DESCRIPTION

Replace existing compressors in respective buildings with new high efficiency compressors

DATA / ASSUMPTIONS

Run Hours based on occupancy schedule
Full Load Design Temperature [${ }^{[F]}$]
COMmISSIONING
Start up equipment ensure proper operation

RECOVERY/SAFETY FACTO

Electric Safety Factor $[\%]=$

formulae

replacement

Variable	JUnits	Description
$\mathrm{w}_{\text {Sunvos }}$	kwh	Electrical Savings
$\mathrm{w}_{\text {cext }}$	kwh	Existing condensing unit Consumption
$\mathrm{w}_{\text {c.pre }}$	kWh	Proposed condensing unit Consumption
$\Sigma^{105}{ }_{60}$	-	Summation of all bins from $60^{\circ} \mathrm{F}$ to $105^{\circ} \mathrm{F}$
c	Ton	Tonnage of condensing unit
next	-	Existing efficiency of condensing unit (EER)
$\eta_{\text {Pepp }}$	-	Proposed efficiency of condensing unit (EER)
Tosion	${ }^{\circ} \mathrm{F}$	Design Temperature of condensing unit (Usually 92.5°)
$\mathrm{T}_{\text {gin }}$	${ }^{\circ} \mathrm{F}$	Bin temperature
Tocc	${ }^{\circ} \mathrm{F}$	Temperature of building during occupied hours
Tunoca	${ }^{\circ}$	Temperature of building during unoccupied hours
tocc	Hrs	Occupied Bin Hours in respective temperature bin
tunoca	Hrs	Unoccupied Bin Hours in respective temperature bin

Inputs are in blue

Building	Label	Capacity [Tons]	Current EER	Proposed EER	Area Serving
Roosevelt Middle School	Chiller 2 Chiller 3	375.0 375.0	12.0	13.0	Entire Building
Totals					

Roosevelt UFSD,

ECM 4 - Mechanical Upgrades
Condensing Unit Replacemen
calculations

Roosevelt UFSD, N

Exhibit D-5-4
Condensing Unit Replacement
Roosevelt mit

Amb. Temp Bin [${ }^{\circ}$]	$\begin{aligned} & \text { Avgerage } \\ & \text { Temp. [}{ }^{[F]} \text {] } \end{aligned}$	01-08 Hours	09-16 Hours	17-24 Hours	Total Bin Hour	Occ.Bin Hours	Unocc. Bin Hours Bin Hours	$\begin{gathered} \text { Occ. Load } \\ \text { [Tons] } \end{gathered}$	Unocc. Load [Tons]	$\begin{gathered} \text { Occ. } \\ \text { Consumption } \\ \text { [Ton-Hrs] } \end{gathered}$	Unocc. Consumption [Ton-Hrs]	Existing Total Consumption [kWh]	Proposed Total Consumption [kWh]	Total Electrical Savings [kWh]
COOLING														
100 to 105	102.5							375.0	375.0					
95 to 100	97.5		3		3	2	1	375.0	375.0	804	321	1,125	1,038	87
90 to 95	92.5	-	18	3	21	13	8	375.0	375.0	5,022	2,853		7,269	
85 to 90	87.5		100	18	118	75	43	261.4	125.0	19,509	5,420	24,929	23,011	1,918
80 to 85	82.5	37	292	126	455	238	217	147.7		35,12		35,112	32,411	2,701
75 to 80	77.5	189	289	247	725	284	441	34.1	-	9,692		9,692	8,946	746
70 to 75	72.5	275	200	270	745	240	505							
65 to 70	67.5	236	184	245	665	217	448							
60 to 65	62.5	232	158	196	586	189	397		-				-	
Total		969	1,244	1,105	3,318	1,259	2.059					78,732	72,675	6,056

Roosevelt UFSD,

ECM 4-Mechanical Upgrade
Condensing Unit Replacemen
SAVINGS SUMMARY

Building ID	kWh Savings kWh	
Centennial Avenue Elementar School		5.0\%
Washington-Rose Elementary School		0.0\%
Ulysses Byas Elementary School		0.0\%
Roosevett Middle School	6,056	0.0\%
Roosevelt High School		0.0\%

Roosevelt UFSD, N

ECM 4 - Mechanical Upgrade
Condensing Unit Replacemen

ECM DESCRIPTION

Replace existing compressors in respective buildings with new high efficiency compressors

DATA / ASSUMPTIONS

Run Hours based on occupancy schedule
Full Load Design Temperature [${ }^{[F]}$]
COMmISSIONING
Start up equipment ensure proper operation

RECOVERY/SAEETY FACTO

Electric Safety Factor [\%] = 10\%

formulae

replacement

Variable	JUnits	Description
$\mathrm{w}_{\text {Sunvos }}$	kwh	Electrical Savings
$\mathrm{w}_{\text {cext }}$	kwh	Existing condensing unit Consumption
$\mathrm{w}_{\text {c.pre }}$	kWh	Proposed condensing unit Consumption
$\Sigma^{105}{ }_{60}$	-	Summation of all bins from $60^{\circ} \mathrm{F}$ to $105^{\circ} \mathrm{F}$
c	Ton	Tonnage of condensing unit
next	-	Existing efficiency of condensing unit (EER)
$\eta_{\text {Pepp }}$	-	Proposed efficiency of condensing unit (EER)
Tosion	${ }^{\circ} \mathrm{F}$	Design Temperature of condensing unit (Usually 92.5°)
$\mathrm{T}_{\text {gin }}$	${ }^{\circ} \mathrm{F}$	Bin temperature
Tocc	${ }^{\circ} \mathrm{F}$	Temperature of building during occupied hours
Tunoca	${ }^{\circ}$	Temperature of building during unoccupied hours
tocc	Hrs	Occupied Bin Hours in respective temperature bin
tunoca	Hrs	Unoccupied Bin Hours in respective temperature bin

Building	Label	Capacity [Tons	Current EER	Proposed EER	Area Serving
Ulysses Byas Elementary School	RTU	325.0	12.0	13.0	Entire Building
als		325.0			

oosevelt UFSD,

ECM 4-Mechanical Upgrade
Condensing Unit Replacemen
CALCULATIONS

	Ulysses Byas Elementary School
Label	RTU
	Entire
Area Serving	Building
Condensing Unit Capacity [Tons]	325.0
Current EER	12.0
Proposed EER	13.0
Proposed Occ. Coooling Setpoint [$\left.{ }^{\circ} \mathrm{F}\right]$	76.0
Proposed Unocc. Cooling setpoint [${ }^{\circ}$ F]	85.0
Current Condensing Unit Consumption [kWh]	63,670
Proposed Condensing Unit Consumption [kWh]	58,773
Electric Safety Factor [\%]	0\%
Electrical Savings [kwh]	4,898

Roosevelt UFSD, N

Exhibit D-5-4
Condensing Unit Replacemen

ULYSSES BYAS ELEMENTARY SCHOOL Entire Building														
Amb. Temp Bin [${ }^{\text {F }}$]	Avgerage Temp. ${ }^{\left[{ }^{\circ}\right]}$ [01-08 Hours	09-16 Hours	17-24 Hours	Total Bin Hours	Occ. Bin Hours	Unocc. Bin Hours	$\begin{gathered} \text { Occ. Load Lod } \\ \text { [Tons] } \end{gathered}$	$\begin{array}{\|c} \text { Unocc. Load } \\ \text { [Tons] } \end{array}$	$\begin{array}{\|c\|} \hline \text { Occ. } \\ \text { Consumption } \\ \text { [Ton-Hrs] } \end{array}$	Unocc. Consumption [Ton-HIs]	Existing Total Consumption [kWh]	Proposed Total [kWh]	Total Electrical Savings [kWh]
COOLING														
${ }_{95}^{1000100}$	${ }^{102.5}$:	3		3	2	1	325.0 325.0	325.0 325.0	696	279	975	900	75
90 to 95	92.5	\cdots	18	3	21	13	8	325.0	325.0	4,179	2,646	6,825	6,300	525
85 to 90	87.5	-	100	18	118	71	47	226.5	108.3	16,180	5,045	21,225	19,592	1,633
80 to 85	82.5	37	292	126	455	215	240	128.0		27,549		27,549	25,430	2,119
75 to 80	77.5	189	289	247	725	240	485	29.5	-	7,096		7,096	6,550	546
70 to 75	72.5	275	200	270	745	192	553		-					
${ }_{6} 6$ to 70	${ }_{6}^{67.5}$	${ }_{2}^{236}$	184 158	245	665 586	174 154	${ }_{4}^{491}$	-	-	-				
60 to 65	62.5	232	158	196	586	154	432			-				
Total		969	1,244	1,105	3,318	1,062	2,256					63,670	58,773	4,898

Roosevelt UFSD,

ECM 4-Mechanical Upgrade
Condensing Unit Replacemen
SAVINGS SUMMARY

Building ID	kWh Savings kWh	
Centennial Avenue Elementary School		5.0\%
Washington-Rose Elementary School		0.0\%
Ulyses Byas Elementary school	4,898	0.0\%
Roosevelt Middle School		
Roosevelt High School		0.0\%
Subtotal	4,898	

Roosevelt UFsD,

ECM 4-Mechanical Upgrade
Condensing Unit Replacement
ECM DESCRIPTION

Replace existing low effic

Data / ASSUMPTIONS

Run Hours based on occupancy schedule
Full load Design Temperature [F [] \qquad
COMMISSIONING
Start up equipment ensure proper operatio
RECOVERY/SAFETY FACTOR
Electric Safety Factor $[\%$) $=$ \qquad
\qquad

FORMULAE

REPLACEMENT
$W_{\text {SANMGS }}=W_{\text {CEXT }}-w_{\text {CPRP }}$

Variable	Junits	Description
$\mathrm{w}_{\text {Suwngs }}$	kwh	Electrical Savings
$w_{\text {CEX }}$	kwh	Existing condensing unit Consumption
$w_{\text {cprpe }}$	kWh	Proposed condensing unit Consumption
$\Sigma^{105}{ }_{60}$	-	Summation of all bins from $60^{\circ} \mathrm{F}$ to $105^{\circ} \mathrm{F}$
	Ton	Tonnage of condensing unit
next	-	Existing efficiency of condensing unit (EER)
$\eta_{\text {pep }}$	-	Proposed efficiency of condensing unit (EER)
Tesion	${ }^{\circ}$	Design Temperature of condensing unit (Usually 92.5° F)
$\mathrm{T}_{\text {gn }}$	${ }^{\circ} \mathrm{F}$	Bin temperature
Tocc	${ }^{\circ}$	Temperature of building during occupied hours
Tunoca	${ }^{\circ} \mathrm{F}$	Temperature of building during unoccupied hours
tocc	Hrs	Occupied Bin Hours in respective temperatur bin
tunocc	Hrs	Unoccupied Bin Hours in respective temperature bin

*Inputs are in blue

ilding	Label	$\begin{aligned} & \text { Capacity } \\ & \hline \end{aligned}$	rent EER	mosed EER	
Centennial Avenue Elementary School	ITCloset	6.0	10.0	13.0	ITCloset
	ITCloset	4.0	10.0	13.0	IT Closet

calculations

Centennial Avenue Elementary Schoo	Roosevelt Middle Schoo
it Closet	${ }^{1 T}$ closet
IT Closet	IT Closet
6.0	4.0
10.0	10.0
13.0	13.0
76.0	76.0
76.0	76.0
2,530	1,687
1,996	1,297
55\%	5\%

Roosevelt UFSD,

Exhibit D-5-4
ECM 4- Mechanical Upgrades
Centennial avenue elementary school

cooling $^{\text {Amb. Temp Bin }}{ }^{\text {F }}$	Avg Temp ${ }^{\text {F }}$	01-08 Hours	09-16 Hours	17-24 Hours	Total Bin Hours	Occup.Bin Hours	Unocc. Bin Hours	Occupied Tons	Unoccupied Tons	Occupied Ton- Hrs	Unoccupied Ton-Hrs	Current Condensing Unit Consumption kWh	Proposed Condensing Unit Consumption kWh	Savings kWh
100 to 105	102.5							6.0	6.0					kWh
95 to 100	97.5		3		3	2	1	6.0	6.0	13		22	17	5
90 to 95	92.5		18	3	21	13	8	6.0	6.0	77	49	151	116	
85 to 90	87.5		100	18	118	71	47	4.2	4.2	299	195	592	455	${ }^{137}$
80 to 85	82.5	37	292	126	455	215	240	2.4	2.4	509	567	1,291	993	298
75 to 80	77.5	189	289	247	725	240	485	0.5	0.5	131	264	475	365	110
700075	72.5	275	200	270	745	192	553							
65 to 70	67.5	236	184	245	665	174	491							
60 to 65	62.5	232	158	196	586	154	432		-					-
Total		969	1,244	1,105	3,318	1,062	2,256	19.1	19.1	1,028	1,080	2,530	1,946	584

ROOSEVELT MIDDLE SCHOOL

Amb. Temp Bin ${ }^{\circ} \mathrm{F}$	Avg Temp ${ }^{\circ} \mathrm{F}$	01-08 Hours	09-16 Hours	17-24 Hours	Total Bin Hours	Occup.Bin Hours	Unocc. Bin Hours	Occupied Tons	Unoccupied Tons	Occupied Ton- Hrs	Unoccupied Ton-Hr	Current Condensing Unit Consumption	$\begin{gathered} \text { Proposed } \\ \text { Condensing Unit } \\ \text { Consumption } \end{gathered}$	Savings
COOLING	1025											kWh		kWh
100 to 105	102.5													
95 to 100 90 to 95	97.5 92.5		18		$\stackrel{3}{31}$	13	1	4.0	4.0 4.0	9		14		
${ }^{90} 85$ to 95	927.5 87.5		18 100	18	21 118	13 75	43	4.0 2.8	4.0 2.8	$\begin{array}{r}54 \\ 208 \\ \hline\end{array}$	$\begin{array}{r}30 \\ 121 \\ \hline 1\end{array}$	101 395	$\begin{array}{r}78 \\ 304 \\ \hline\end{array}$	${ }_{91}^{23}$
80 to 85	82.5	37	292	126	455	238	217	1.6	1.6	375	342	860	662	199
75 to 80	77.5	189	289	247	725	284	441	0.4	0.4	103	160	316	243	73
70 to 75	72.5	275	200	270	745	240	505							
65 to 70	67.5	236	184	245	665	217	448							
60 to 65	62.5	232	158	196	586	189	397							
Total		969	1,244	1,105	3,318	1,259	2,059	12.7	2.7	748	657	1,687	1,297	389

Roosevelt UFSD, NV

Exhibit ---54
ECM 4-Mechanical Upgrade
Condensing Unit Replacemen
SAVIIGS SUMMARY

Building ID		
	kWh	Factor
Centennial Avenue Elementary School	555	5.0\%
Washington-Rose Elementary School		0.0\%
Ulysses Byas Elementary School		0.0\%
Roosevelt Middle School	370	5.0\%
Roosevelt ligh School		0.0\%
Subtotal	924	

Roosevelt UFSD, NY
Exhibit D-5-5
ECM 5-Install De-Stratification Fans

ECM DESCRIITTION
Install de-stratification fans in large open areas to force heated air down to the occupied space and reduce heat loss through the roof and upper walls.
DATA / ASSUMPTIONS
Heating Season Hours 4,016 Hours

Diversity factor set at 95%
COMMISSIONIN
Werify that the installed fans operate. Install clock meter on fans to verify that fans are running $24 / 7$ during heating season
RECOVERY/SAFETY FACTOR
Electric Safety Factor $[\%]=$ \square
The thermal safety factor is conservately set for o\% due to the uncertainity with temperature changes along the elevation of the space, the electric safety factor is set 0% due
to the penalty that is taken for adding fan power.
formula
$\mathrm{W}_{\text {Total }}=\mathrm{W}_{\text {FAN }} \cdot \mathrm{q} \cdot \mathrm{t}_{\text {fan }}$
$Q_{\text {Salw }}=Q_{\text {Total }} \cdot \mu / 100,000 / n$
$a_{\text {Total }}=a_{\text {wal }}+a_{\text {Roof }}+a_{\text {WIN }}$

$a_{\text {wiN }}=\sum^{60}{ }_{-15}\left[\left(\left(T_{\text {occ }}-T_{\text {gin }}\right) \cdot A_{\text {wiN }} \cdot U_{\text {win }} \cdot t_{\text {occ }}\right)+\left(\left(T_{\text {unocc }}-T_{\text {gin }}\right) \cdot A_{\text {wiN }} \cdot U_{\text {wiw }} \cdot U_{\text {tuocc }}\right)\right]$

Roosevelt UFSD, NY
 Exhibit D-5-5

ECM 5 - Install De-Stratification Fans

Variable	Units	Description
$a_{\text {Savnos }}$	Therms	Annual thermal savings
$\Sigma^{60}{ }_{15}$	-	Summation of all bins from $-15^{\circ} \mathrm{F}$ to $60^{\circ} \mathrm{F}$
$\mathrm{n}_{\text {Boler }}$	\%	Boile Efficiency
μ	\%	Diversity factor of de-stratification fans
a ${ }_{\text {Total }}$	вTU	Total heat loss
$\mathrm{a}_{\text {wall }}$	вти	Heat loss through wall (above de-stratification fan)
$\mathrm{a}_{\text {foof }}$	вти	Heat loss through roof
$\mathrm{a}_{\text {wiv }}$	вти	Heat loss through windows (above de-stratification fan)
$\mathrm{T}_{\text {gn }}$	${ }^{\circ}$	Temperature of respective bin
Tocc	${ }^{\circ}$	Existing temperature of space during occupied hours
Tunocc	${ }^{\text {a }}$	Existing temperature of space during unoccupied hours
tocc	Hrs	Occupied Bin Hours in respective temperature bin
tunocc	Hrs	Unoccupied Bin Hours in respective temperature bin
$A_{\text {walu }}$	ft^{2}	Exposed wall area adove de-stratification fan
$A_{\text {foof }}$	ft^{2}	Exposed roof area adove de-stratification fan
$A_{\text {wnnoow }}$	ft^{2}	Exposed window area adove de-stratification fan
Uwall	BTU/ $/ \mathrm{t}^{2} /$ / $/ \mathrm{F}$	U-factoro of wall
$\mathrm{U}_{\text {Roof }}$	BTU/ $/ t^{2} /$ / $/$ F	U-factor of roof
$U_{\text {win }}$	BTU/ $/ \mathrm{t}^{2} /$ / ${ }^{\text {F }}$	U-factor of windows
$\mathrm{w}_{\text {Total }}$	kWh	Annual electrical consumption of fans
q	-	Quantity of fans
$\mathrm{w}_{\text {fan }}$	kw	Input kW of fan
$\mathrm{t}_{\text {tan }}$	Hrs	Annual run time of de-stratification fan (annual heating hours)

assumptons/Data

* Inputs are in blue

Building	Location	Wall Length Perimeter [ft]	Wall Width Perimeter [tt]	$\begin{array}{\|c} \begin{array}{c} \text { Exposed Wall } \\ \text { Height Above Fan } \\ \text { [ft] } \end{array} \\ \hline \end{array}$	Roof Area [ft ${ }^{2}$]	Window Area [ft^{2} - Above Fan]	Roof U-Factor [BTU/ft $\left.{ }^{2} \cdot{ }^{\circ} \mathrm{F} \cdot \mathrm{hr}\right]$	Window U- Factor $\left[B T U / \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F} \cdot \mathrm{hr}\right]$	Wall U-Factor [BTU/ft $\left.{ }^{2} \cdot{ }^{\circ} \mathrm{F} \cdot \mathrm{hr}\right]$	$\left.\begin{array}{\|c\|} \hline \text { Proposed } \\ \text { Efficier } \\ \text { Eficiency } \\ {[\%]} \end{array} \right\rvert\,$
Centennial Avenue Elementary school	Main Gym	78	52	6.0	4,056	-	0.08	0.67	0.11	79.0\%
Washington-Rose Elementary School	Gym	76	50	6.0	3,800	252	0.08	0.67	0.11	89.0\%
Ulyses Byas Elementary School	Gym	75	51	6.0	3,825		08	. 67	0.11	81.0\%
Roosevelt Middle School	Gym	100	62	6.0	5,200	324	08	67	. 11	.0\%
Roosevelt tigh School	Gym	106	86	0	16	32	0.08	0.67	0.11	89.0\%
Roosevelt High School	Aux Gym	95	60	6.0	5,700	120	0.08	0.67	0.11	89.\%
Totals										

Roosevelt UFSD, NY

Exhibit D-5-5
ECM 5- Install De-Stratification Fans
calculations

	$\begin{aligned} & \text { Centennial } \\ & \text { Avenue } \\ & \text { Elementary } \\ & \text { School } \end{aligned}$ School	$\begin{aligned} & \text { Washington- } \\ & \text { Rose } \\ & \text { Elementary } \\ & \text { School } \end{aligned}$	Ulysses Byas Elementary Schoo	Roosevelt Middle School	Roosevelt High School	Roosevelt High School
Location	Main Gym	6ym	Gym	Gym	Gym	Aux Gym
Wall Length [ft)	78	76	75	100	106	95
Wall Width [ft]	52	50	51	62	86	60
Wall Height Above Fan [ft)	6.0	6.0	6.0	6.0	6.0	6.0
Roof Area $\left[t^{2}\right]$	4,056	3,800	3,825	6,200	9,116	5,700
Window Area $\left[\mathrm{ft}^{2}\right]$		252		324	32	120
Wall Exposed Area [ft ${ }^{2}$]	1,560	1,260	1,512	1,620	2,272	1,40
	0.08	0.08	0.08	0.08	0.08	0.08
Window U-Factor [BTU/ft $2 \cdot \mathrm{~F} \cdot \mathrm{hr}]$	0.67	0.67	0.67	0.67	0.67	0.67
Wall U-factor [BTU/ft t^{2} F-Fhr $]$	0.11	0.11	0.11	0.11	0.11	0.11
Fan Model	Air Pear 25					
Total Run Hours [hrs)	4,016	4,016	4,016	4,016	4,016	4,016
Fan Input Watt [W]	31.3	31.3	31.3	31.3	31.3	31.3
Fan Electrical Consumption [kWh]	126	126	126	126	126	126
Area Coverage per Fan [ft $\left.{ }^{2}\right]$	1,200	1,200	1,200	1,200	1,200	1,200
Total Fans						
Total Fan Electrical Consumption [kWh]	503	503	503	754	1,006	629
Proposed Occ. Heating Setpoint $\left.{ }^{\circ} \mathrm{F}\right]$	\%.0	68.0	68.0	68.0	68.0	68.0
Proposed Unocc. Heating Setpoint $\left[^{\circ} \mathrm{F}\right]$	55.0	55.0	55.0	55.0	55.0	55.0
Diversity Factor [\%]	95\%	95\%	95\%	95\%	95\%	95\%
Proposed Boile Efficiency [\%]	79.0\%	89.0\%	81.0\%	89.0\%	89.0\%	89.0\%
Fan Electric Penalty kWW]	(503)	(503)	(503)	(754)	$(1,006)$	${ }^{629}$
Calculated fuel Saving [Therms)	451	497	419	753	843	649
Electric Safety Factor [\%]	0\%	\%	\%	\%	0\%	\%
Thermal Safety Factor [\%]	0\%	0\%	0\%	0\%	0\%	0\%
Additional Electric Usage [kWh]			(503)	(754)		(629)
Calculated fuel Saving [Therms)	451	497	419	753	${ }^{843}$	

Roosevelt UFSD, N

Exhibit D-5-5
ECM 5 - Install De-Stratification Fans
centennial avenue elementary school Main Gym

Amb. Temp Bin [${ }^{\text {fr] }}$	Ave Temp [${ }^{\text {fr] }}$	01-08 Hours	09-16 Hours	17-24 Hours	Total Bin Hours	Occupied Bin Hours	Unoccupied Bin Hours	Exposed Wall Area $\left[\mathrm{ft}^{2}\right]$	Exposed Roof Area $\left[\mathrm{t}^{2}\right]$	Window Area $\left[f t^{2}\right]$	Wall U-Factor [BTU/ft ${ }^{2}$.F.hr]	$\begin{aligned} & \text { Roof U-Factor } \\ & \text { [BTU/ft }{ }^{2} \cdot{ }^{\circ} \text { F.hr] } \end{aligned}$	Window U-Factor [BTU/ft ${ }^{2} \cdot{ }^{\circ} \mathrm{F} \cdot \mathrm{hr}$]	$\begin{array}{\|c\|} \hline \text { Wall Heat } \\ \text { Loss }[\mathrm{BTU} / \mathrm{Yr}] \end{array}$	Roof Heat Loss [BTU/Yr]	Windows Heat Loss [BTU/Yr]	Total Heat Loss [BTU/Yr]
HEATING																	
55 to 60	57.5	60	127	96	283	101	182	1,560	4,056		0.11	0.08	0.67	100,094	195,802		295,
50 to 55	52.5	110	178	125	413	147	266	1,560	4,056	-	0.11	0.08	0.67	481,689	942,275	-	1,423,964
45 to 50	47.5	108	164	121	393	136	257	1,560	4,056		0.11	0.08	0.67	773,312	1,512,745	-	2,286,056
40 to 45	42.5	240	251	280	771	222	549	1,560	4,056		0.11	0.08	067	2,051,654	4,013,425	-	6,65,079
35 to 40	37.5	355	282	362	999	265	734	1,560	4,056		0.11	0.08	0.67	3,427,544	6,704,929		10,13, 474
30 to 35	32.5	239	120	167	526	128	398	1,560	4,056		0.11	0.08	0.67	2,211,973	4,37,040	-	6,539,013
25 to 30	27.5	109	76	81	266	74	192	1,560	4,056	-	0.11	0.08	0.67	1,355,240	2,651,108		4,006,348
20 to 25	22.5	100	51	72	223	54	169	1,560	4,056	-	0.11	0.08	0.67	1,302,737	2,548,401	-	3,851,137
15 to 20	17.5	58	29	25	112	31	81	1,560	4,056		0.11	0.08	0.67	754,124	1,475,209		2,229,333
10 to 15	12.5	10	5	6	21	5	16	1,560	4,056		0.11	0.08	0.67	157,599	308,294		465,893
5 to 10	7.5	8		1	9	1	8	1,560	4,056		0.11	0.08	0.67	73,066	142,932	-	215,99
0 to 5	2.5		-			.		1,560	4,056		0.11	0.08	0.67		-	-	
-5to 0	-2.5	-	-	-	-	-	-	1,560	4,056	-	0.11	0.08	0.67	-	-	-	.
-10to-5	-7.5					-		1,560	4,056		0.11	0.08	0.67			-	
-15 to - 10	-12.5	-	-	-	-	-	-	1,560	4,056		0.11	0.08	0.67	-	-	-	
Total							2850							1268930	24822160		37,511,90

WASHINGTON-ROSE ELEMENTARY SCHOOL G

Amb. Temp Bin [${ }^{\text {P }]}$	Ave Temp [${ }^{\text {[f] }}$	01-08 Hours	09-16 Hours	17-24 Hours	Total ${ }^{\text {Bin }}$ Hours	Occupied Bin Hours	Unoccupied Bin Hours	Exposed Wall Area $\left[f^{2}\right]$	Exposed Roof Area $\left[t^{2}\right]$	Window Area [ft2]	Wall U-Factor [BTU/ft $\left.{ }^{2} \cdot{ }^{\circ} \mathrm{F} \cdot \mathrm{hr}\right]$	Roof U-Factor [BTU/ft $\left.{ }^{2} \cdot{ }^{\circ} \mathrm{F} \cdot \mathrm{hr}\right]$	Window U-Factor [BTU/ft ${ }^{2} \cdot{ }^{\circ} \cdot \mathrm{hr}$]	Wall Heat Loss $[B T U / Y r]$	Roof Heat Loss $[B T U / Y r]$	Windows Heat Loss [BTU/Yr]	Total Heat Loss [BTU/Rr]
Eating																	
55 to 60	57.5	60	127	96	283	101	182	1,260	3,800	252	0.11	0.08	0.67	80,845	183,444	102,711	367,000
50 to 55	52.5	110	178	125	413	147	266	1,260	3,800	252	0.11	0.08	0.67	389,057	882,802	494,287	1,766,146
45 to 50	47.5	108	164	121	393	136	257	1,260	00	252	0.11	8	0.67	624,598	1,417,266	793,53	2,835,400
40 to 45	42.5	240	251	280	771	222	549	1,260	3,800	252	0.11	0.08	0.67	1,657,105	3,760,112	2,105,312	7,522,529
35 to 40	37.5	335	282	362	999	265	734	1,260	3,800	252	0.11	0.08	0.67	2,768,401	6,281,739	3,517,188	12,567,327
30 to 35	32.5	239	120	167	526	128	398	1,260	3,800	252	0.11	0.08	0.67	1,786,593	4,053,933	2,269,824	8,110,351
25 to 30	27.5	109	76	81	266	74	192	1,260	3,800	252	0.11	8	0.67	1,094,617	2,483,780	1,390,685	4,969,082
20 to 25	22.5	100	51	72	223	54	169	1,260	3,800	252	0.11	0.08	0.67	1,052,210	2,387,555	1,36,808	4,776,573
15 to 20	17.5	58	29	25	112	31	81	1,260	3,800	252	0.11	0.08	0.67	609,100	1,382,099	773,847	2,765,046
10 to 15	12.5	10	5	6	21	5	16	1,260	3,800	252	11	0.08	0.67	127,292	288,835	161,721	577,848
5 to 10	7.5	8		1	9	1	8	1,260	3,800	252	0.11	0.08	0.67	59,015	133,911	74,977	267,903
0 to 5	2.5							1,260	3,800	252	0.11	0.08	0.67			-	
-5to 0	-2.5							1,260	3,800	252	0.11	0.08	0.67		-	-	
-10to-5	-7.5			-		-		1,260	3,800	252	0.11	0.08	0.67		-	-	
-15 to - 10	-12.5			-	-	-		1,260	3,800	252	0.11	0.08	0.67		-	-	

Roosevelt UFSD, N

Exhibit D-5-5
ECM 5 - Install De-Stratification Fans

ULYSSES BYAS ELEMENTARY SCHOOL Gym

Amb. Temp Bin [${ }^{\circ}$] $]$	Ave Temp [${ }^{\text {f/ }}$]	$01-08$ Hours	09-16 Hours	17-24 Hours	Total Bin Hours	Occupied Bin Hours	Unoccupied Bin Hours	Exposed Wall	Exposed Roof Area $\left[\mathrm{ft}^{2}\right]$	Window Area	$\begin{array}{\|l\|} \hline \text { Wall U-Factor } \\ {\left[\text { BTU/ft }{ }^{2} \cdot{ }^{\circ} \mathrm{F} \cdot \mathrm{hr}\right]} \end{array}$	$\begin{aligned} & \hline \text { Roof U-Factor } \\ & {\left[\text { BTU/ft }{ }^{2} \cdot{ }^{\circ} \mathrm{F} \cdot \mathrm{hr}\right]} \end{aligned}$		$\begin{gathered} \text { Wall Heat } \\ \text { Loss }[\mathrm{BTU} / \mathrm{Yr}] \end{gathered}$	Roof Heat Loss	$\left.\begin{array}{\|c\|} \hline \text { Windows Heat } \\ \text { Loss }[\text { BTU } / \mathrm{rr} \end{array} \right\rvert\,$	Total Heat Loss
Heating																	
55 to 60	57.5	60	127	96	283	101	182	1,512	3,825		0.11	0.08	0.67	97,014	184,651	.	281,664
50 to 55	52.5	110	178	125	413	147	266	1,512	3,825	-	11	0.08	0.67	466,868	888,610	-	1,355,478
45 to 50	47.5	108	164	121	393	136	257	1,512	3,825		0.11	0.08	0.67	749,517	1,426,590		2,176,107
40 to 45	42.5	240	251	280	771	222	549	1,512	3,825	-	0.11	0.08	0.67	1,988,526	3,784,850	-	5,773,375
35 to 40	37.5	355	282	362	999	265	734	1,512	3,825	.	0.11	0.08	0.67	3,322,081	6,323,066	-	9,645,147
30 to 35	32.5	239	120	167	526	128	398	1,512	3,825	-	0.11	0.08	0.67	2,143,912	4,080,604	-	6,224,516
25 to 30	27.5	109	76	81	266	74	192	1,512	3,825	-	0.11	0.08	0.67	1,313,541	2,500,120	-	3,813,661
20 to 25	22.5	100	51	72	223	54	169	1,512	3,825	-	0.11	0.08	0.67	1,262,652	2,403,263		3,665,915
15 to 20	17.5	58	29	25	112	31	81	1,512	3,825	-	0.11	0.08	0.67	730,920	1,391,192	-	2,122,112
10 to 15	12.5	10	5	6	21	5	16	1,512	3,825	-	0.11	0.08	0.67	152,750	290,736	-	443,485
5 to 10	7.5	8	-	1	9	1	8	1,512	3,825	-	0.11	0.08	0.67	70,818	134,792	-	205,610
0 to 5	2.5							1,512	3,825	-	0.11	0.08	0.67		-	-	
-5to 0	-2.5	.	-	-	.	-	-	1,512	3,825	-	0.11	0.08	0.67	-	-	-	
-10to-5	-7.5			-	-	-		1,512	3,825		0.11	0.08	0.67		-	-	
-15 to - 10	-12.5	-	-	-	-	-	-	1,512	3,825	-	0.11	0.08	0.67	-	-	-	
Total		1,397	1,283	1,336	4.016	1,166	2.850							12,28,599	23,40,472	-	35,70,071

ROOSEVELT MIDDLE SCHOOL
Gym

Amb. Temp Bin [${ }^{\text {P }}$]	Ave Temp [${ }^{\text {fe] }}$	$01-08$ Hours	09-16 Hours	17-24 Hours	$\begin{array}{\|c\|} \hline \text { Totalal in } \\ \text { Hours } \end{array}$	Occupied Bin Hours	$\begin{array}{\|c\|} \hline \text { Unoccupied } \\ \text { Bin Hours } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Exposed Wall } \\ & \text { Area }\left[\mathrm{ft}^{2}\right] \end{aligned}$	$\begin{array}{\|c} \hline \text { Exposed Roof } \\ \text { Area }\left[\mathrm{ft}^{2}\right] \end{array}$	Window Area [ft2]	$\begin{array}{\|l\|} \hline \text { Wall U-Factor } \\ \text { [BTU/ft } 2 \cdot F \cdot \text { hr }] \\ \hline \end{array}$	$\begin{array}{l\|} \hline \text { Roof U-Factor } \\ {\left[\text { BTU } / \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F} \cdot \mathrm{hr}\right]} \end{array}$	Window U-Factor [BTU/ft ${ }^{2} \cdot F \cdot$-hr]	$\begin{array}{\|c\|} \hline \text { Wall Heat } \\ \text { Loss }[\mathrm{BTU} / \mathrm{Yr}] \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { Roof Heat Loss } \\ {[B T U / Y r]} \end{array}$	$\begin{aligned} & \hline \text { Windows Heat } \\ & \text { Loss [BTU/Yr] } \\ & \hline \end{aligned}$	Total Heat Loss [BTU/Yr]
HEATING																	
55 to 60	57.5	60	127	96	283	119	164	1,620	6,200	324	0.11	0.08	0.67	141,851	408,458	180,219	730,528
50 to 55	52.5	110	178	125	413	169	244	1,620	6,200	324	0.11	0.08	0.67	549,575	1,582,491	698,222	2,830,288
45 to 50	47.5	108	164	121	393	158	235	1,620	6,200	324	0.11	0.08	0.67	850,834	2,449,962	1,080,964	4,381,761
40 to 45	42.5	240	251	280	771	272	499	1,620	6,200	324	0.11	0.08	0.67	2,241,128	6,453,290	2,847,300	11,541,718
35 to 40	37.5	355	282	362	999	329	670	1,620	6,200	324	0.11	0.08	0.67	3,702,318	10,660,759	4,703,706	19,06,783
30 to 35	32.5	239	120	167	526	158	368	1,620	6,200	324	0.11	0.08	57	2,362,993	6,804,19	3,002,126	12,16,315
25 to 30	27.5	109	76	81	266	88	178	1,620	6,200	324	0.11	0.08	0.67	1,439,350	4,144,583	1,88,660	7,412,592
20 to 25	22.5	100	51	72	223	67	156	1,620	6,200	324	0.11	0.08	0.67	1,381,273	3,977,351	1,754,874	7,113,498
15 to 20	17.5	58	29	25	112	36	76	1,620	6,200	324	0.11	0.08	0.67	793,000	2,283,430	1,007,488	4,083,918
10 to 15	12.5	10	5	6	21	6	15	1,620	6,200	324	0.11	0.08	0.67	166,030	478,080	210,937	855,046
5 to 10	7.5	8		1	9	2	7	1,620	6,200	324	0.11	0.08	0.67	76,272	219,623	96,901	392,796
0 to 5	2.5							1,620	6,200	324	0.11	0.08	0.67		-	-	
-5to 0	-2.5	-		-		-		1,620	6,200	324	0.11	0.08	0.67		-	-	
-10to-5	-7.5	.					-	1,620	6,200	324	0.11	0.08	0.67	-	-	-	
-15 to - 10	-12.5							1,620	6,200	324	0.11	0.08	0.67		.	.	

Roosevelt UFSD, NY

Exhibit D-5-5
ECM 5-Install De-Stratification Fans
ROOSEVELT HIGH SCHOOL Gym

Amb. Temp Bin [$¢ \mathrm{~F}$]	Ave Temp [${ }^{\circ} \mathrm{F}$]	01.08 Hours	09-16 Hours	17-24 Hours	Total Bin Hours	Occupied Bin Hours	Unoccupied Bin Hours	Exposed Wall Area $\left[\mathrm{ft}^{2}\right]$	$\begin{gathered} \text { Exposed Roof } \\ \text { Area }\left[\mathrm{ft}^{2}\right] \end{gathered}$	Window Area [ft2]	Wall U-Factor [BTU/tt $\cdot 9$ Fhr	$\left.\right\|_{\text {RTUU/t } t^{2} \cdot F \cdot \text {-hr] }} ^{\text {Roof U-Fator }}$	Window U-Factor [BTU/ft'.FF.hr]	Wall Heat Loss [BTU/Yr]	Roof Heat Loss [BTU/Yr]	Windows Heat Loss [BTU/Yr]	Total Heat Los [BTU/Yr]
HEATING																	
55 to 60	57.5	60	127	96	283	19	164	2,272	9,116	32	0.11	0.08	0.67	198,942	600,565	17,799	817
50 to 55	52.5	110	178	125	413	169	244	2,272	9,116	32	0.11	0.08	0.67	770,762	2,366,773	68,960	3,166,495
45 to 50	47.5	108	164	121	393	158	235	2,272	9,116	32	0.11	0.08	0.67	1,193,269	3,602,235	106,762	4,902,265
40 to 45	42.5	240	251	280	771	272	499	2,272	9,116	32	0.11	0.08	0.67	3,143,113	9,488,418	281,215	12,912,746
35 to 40	37.5	355	282	362	999	329	670	2,272	9,116	32	0.11	0.08	0.67	5,92,386	15,674,755	464,564	21,331,705
30 to 35	32.5	239	120	167	526	158	368	2,272	9,116	32	0.11	0.08	0.67	3,314,024	10,004,364	296,506	13,614,895
25 to 30	27.5	9	76	81	266	88	178	2,272	9,116	32	0.11	0.08	0.67	2,018,64	6,093,87	180,608	8,293,
20 to 25	22.5	100	51	72	223	67	156	2,272	9,116	32	0.11	0.08	0.67	1,937,192	5,847,989	173,321	7,958,502
15 to 20	17.5	58	29	25	112	36	76	2,272	9,116	32	0.11	0.08	0.67	1,112,158	3,357,379	99,505	4,569,042
10 to 15	12.5	10	5	6	21	6	15	2,272	9,116	32	0.11	0.08	0.67	232,852	702,932	20,833	956,616
5 to 10	7.5	8		1	9	2	7	2,272	9,116	32	0.11	0.08	0.67	106,969	322,916	9,570	439,455
0 to 5	2.5	-	-	-	-	-	-	2,272	9,116	32	0.11	0.08	0.67	-	-	-	
-5to 0	-2.5	.	.	-		-	-	2,272	9,116	32	0.11	0.08	0.67	-	-	-	
-10 to-5	-7.5	-	-	-	-	-	-	2,272	9,116	32	0.11	0.08	7	-			
-15 to - 10	-12.5						-	2,272	9,116	32	0.11	0.08	0.67		-	-	
														19,220,311	58,022,199	1,719,644	

ROOSEVELT HIGH SCHOOL
Aux Gym

Amb. Temp Bin [${ }^{\text {P }}$]	Ave Temp [${ }^{\text {fe] }}$	01-08 Hours	09-16 Hours	17-24 Hours	$\begin{array}{\|c\|} \hline \text { Totalal in } \\ \text { Hours } \end{array}$	Occupied Bin Hours	$\begin{gathered} \hline \text { Unoccupied } \\ \text { Bin Hours } \end{gathered}$	$\begin{gathered} \text { Exposed Wall } \\ \text { Area [ft2] } \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { Exposed Roof } \\ \text { Area [ft2] } \\ \hline \end{array}$	Window Area [ft2]	$\begin{array}{\|c\|} \hline \text { Wall U-Factor } \\ \text { [BTU/ft2•FFhr] } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Roof U-Factor } \\ \text { [BTU/ft2 } \left.\cdot{ }^{\circ} \mathrm{F} \cdot \mathrm{hr}\right] \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Window U-Factor } \\ \text { [BTU/ft2•FFhr] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Wall Heat } \\ \text { Loss }[\mathrm{BTU} / \mathrm{Yr}] \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { Roof Heat Loss } \\ {[B T U / Y r]} \end{array}$	$\begin{aligned} & \hline \text { Windows Heat } \\ & \text { Loss [BTU/Yr] } \\ & \hline \end{aligned}$	Total Heat Loss [BTU/Yr]
HEATING																	
55 to 60	57.5	60	127	96	283	144	139	1,740	5,700	120	0.11	0.08	0.67	213,433	526,047	93,504	832,984
50 to 55	52.5	110	178	125	413	203	210	1,740	5,700	120	0.11	0.08	0.67	669,808	1,650,872	293,440	2,614,119
45 to 50	47.5	108	164	121	393	190	203	1,740	5,700	120	0.11	0.08	0.67	990,838	2,442,114	434,081	3,867,032
40 to 45	42.5	240	251	280	771	347	424	1,740	5,700	120	0.11	0.08	0.67	2,585,270	6,371,006	1,132,595	10,089,771
35 to 40	37.5	355	282	362	999	426	573	1,740	5,700	120	0.11	0.08	0.67	4,206,863	10,368,640	1,843,007	16,48,510
30 to 35	32.5	239	120	167	526	203	323	1,740	5,700	120	0.11	0.08	0.67	2,644,273	6,517,329	1,158,443	10,32,044
25 to 30	27.5	109	76	81	266	110	156	1,740	5,700	120	0.11	0.08	0.67	1,597,499	3,937,351	699,857	6,234,707
20 to 25	22.5	100	51	72	223	86	137	1,740	5,700	120	0.11	0.08	0.67	1,529,395	3,769,493	670,021	5,968,909
15 to 20	17.5	58	29	25	112	42	70	1,740	5,700	120	0.11	0.08	0.67	867,646	2,138,483	380,111	3,386,240
10 to 15	12.5	10	5	6	21	8	13	1,740	5,700	120	0.11	0.08	0.67	182,145	448,933	79,797	710,875
5 to 10	7.5	8		1	9	2	7	1,740	5,700	120	0.11	0.08	0.67	82,558	203,479	36,168	322,205
0 to 5	2.5							1,740	5,700	120	0.11	0.08	0.67		-	-	
-5to 0	-2.5	-		-		-		1,740	5,700	120	0.11	0.08	0.67		-	-	
-10to-5	-7.5	.				.	-	1,740	5,700	120	0.11	0.08	0.67	-	-	-	
-15 to - 10	-12.5							1,740	5,700	120	0.11	0.08	0.67			.	

Roosevelt UFSD, NY

Exhibit D-5-5
ECM 5 - Install De-Stratification Fans
SAVINGS SUMMARY

Building ID	kWh Savings	Savings	Factor	$\begin{aligned} & \text { ermal Safe } \\ & \text { Factor } \end{aligned}$
	kWh	Therms	\%	\%
Centennial Avenue Elementary School	(503)	451	0.0\%	0.0\%
Washington-Rose Elementary School	(503)	497	0.0\%	0.0\%
Ulysses Byas Elementary School	(503)	419	0.0\%	0.0\%
Roosevelt Middle School	(754)	753	0.0\%	0.0\%
Roosevelt tigh School	(1,634)	1,491	0.0\%	0.0\%
Subtotal	$(3,897)$	3,611		

Roosevelt UFSD, NY

ECM 6 - Building Management System Upgrades

ECM DESCRIPTION

The building management system will be upgraded to allow for the implementation of advanced control strategies
DATA / ASSUMPTIONS
Heating Season Hours 4,016 Hours
Schedules and temperature setpoints are based on interiews with facility personnel and datal logging trends pefformed throughout the buililings
commissioning

ReCovery/SAFETY FActor

eormuas

Variale	Units	Description
$Q_{\text {amines }}$	Therms	Thermal Svaings
$\Sigma^{600}{ }_{\text {I }}$	-	Summation ofall bins from $15^{\circ} \mathrm{F}$ to $60^{\circ} \mathrm{F}$
$T_{\text {tem }}$	${ }^{\circ}$	Temperature of respective bin
toce	Hrs	Existing occupied Bin Hours in respective temperature bin
tunocc	Hrs	Existing unoccupied Bin Hours in respective temperature bin
tocc	Hrs	Proposed occupied B in Hours in respective temperature bin
twoocc	Hrs	Proposed unocupied B in Hours in respective temperature bin
Tocc	${ }^{\text {F }}$	Existing temperature of space during ocupied hours
Tunoce	${ }^{\text {F }}$	Exising temperature of space during unoccupied hours
${ }^{\text {Tocc }}$	${ }^{\circ}$	Proposed temperatur of space during ocupied hours
Tunoco	${ }^{\circ}$	Proposed temperature of space during unoccupied hours
HDexsme	${ }^{\text {PF-Hrs }}$	Exising heating defree hours in space
${ }^{\text {Hpproosesio }}$	${ }^{\circ} \mathrm{F}$-Hts	Proposed heating degree hours in space
Fuelonstio	Therms	Adjusted Boiler fuel Ssage

* Inputs for Section 1 and section 2 are in blue

PROPosED							
Section 1				Section 2			
Occ. Heating Temp [${ }^{\circ} \mathrm{F}$]	$\begin{gathered} \text { Hectay } \\ \text { Heating } \\ \text { Tomp } \end{gathered}$	Occ. Cooling Temp [${ }^{\circ}$ F]	$\begin{gathered} \text { Unocc. } \\ \text { Cooning } \\ \text { Temp } \\ \text { Tfic } \end{gathered}$	Occ. Heating Temp [${ }^{\circ} \mathrm{F}$]	Unocc. Heating Temp [${ }^{\circ}$ F]	Occ. Cooling Temp [${ }^{\circ}$]	$\begin{gathered} \text { Unocc. } \\ \text { Cocing } \\ \text { Tomp } \\ \text { Temp } \end{gathered}$
68.0	55.0	${ }^{76.0}$	${ }^{85.0}$				
68.0	55.0	76.0	85.0				
68.0	55.0	76.0	85.0				
68.0	55.0	76.0	85.0				
68.0	55.0	7.0	85.0				

Roosevelt UFSD, NY

Exhibit D-5. 6
-

	$\begin{aligned} & \text { Centennial } \\ & \text { Avenue } \\ & \text { Elementary } \\ & \text { School } \end{aligned}$		Ulysses Byas Elementary Schoo	Roosevelt Middle Schoo	Roosevelt High Schoo
Occupied Sin Hours	1,884	4,016	1,586	2,494	1,762
Occupied Heating Degree Hour $[$ H-H-Hrs	57,952	126,566	48,632	80,81	53,985
Annual Boier Usage [Therms]	31,989	50,985	51,856	75,60	87,00
Adiusted Anual Boier Usage [Therms]	29,719	48,842	51,100	391	7,243
Existing Heating Degree Hours [HD-Hrs]	103,118	126,566	99,837	112,322	101,776
Prooosed Heating Degree Hours [H0-Hrs]	77,21	77,921	77,921	30,979	8,979
Thermal safery fator $[\%]$	5\%	30\%	5\%	5\%	5\%
Therma 1 Svings $\%$	23.2\%	2.9\%	20.9\%	26.5\%	4.4\%
Therma Saving [Therms	6,899	13,141	10,657	18,60	14,994

ELECTRIC NIGHT SETBACK SAVINGS CALCULATIONS

Annual lectric Usage ekwh]	1,051,200	1,13,200	861,920	2,95,040	2,037,280
Annual cooing Electric Baseline k kwh	199,040	267,886	20	361,440	176,240
Existing Coooling Degree Hour [[C-Hrs]	7,544	8,457	5,495	6,472	${ }_{6,485}$
Proopsed Cooing Degree Hour [CD-Hrs]	3,027	3,027	3,027	3,273	,273
Electric Normalization Factor [\%\%	15\%	15\%	15\%	15\%	15\%
Electric Safery Factor $\%$	5\%	10\%	\%	\%	\%
Electrical Savings $\%$	48.4\%	99.1\%	38.2\%	42.0\%	22.1\%
Electrical Savings $\mathrm{kWWh}^{\text {a }}$	72,063	131,587	14,600	151,856	74,200

exhaust fan scheoule savings calculations

Total Exhaust fan Power Controlled [kw]				${ }^{0.4}$	
Existing Exhaust fan Run Hours hrs]	7,334	7,334	7,334	7,34	7,334
Proposed Exhaust fan Run Hours [hrs	2,228	2,228	2,228	2,663	
Electric Safety fator [\%]	5\%	10\%	0\%	0\%	0\%

Roosevelt UFSD, NY

ECM 6 - Building Management System Upgrades
CENTENNIAL AVENUE ELEMENTARY SCHOO

a						Current Operating schedule													Proposed Operating schedule						
Amb. Temp Bin [${ }^{\text {Pr] }}$	Ave Temp [${ }^{\text {f }}$]	01.08 Hours	09.16 Hours	17-24 Hours	$\begin{gathered} \text { Total Bin } \\ \text { Hours } \end{gathered}$	$\begin{gathered} \text { Occup. Bin } \\ \text { Hours } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Unocc. } \\ & \text { Bin Hours } \end{aligned}$	$\begin{array}{\|c} \text { Occup. } \\ \text { Indoor Temp } \\ \text { [F] } \end{array}$	$\begin{gathered} \text { Unocc. } \\ \text { Indoor Temp [} \left.{ }^{\circ} \mathrm{F}\right] \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { Occup. } \\ \text { Cooling Degree } \\ \text { Hours [CD-Hrs] } \\ \hline \end{array}$	$\begin{array}{\|c} \text { Unocc. } \\ \text { Cooling Degree } \\ \text { Hours [CD-Hrs] } \\ \hline \end{array}$		$\begin{array}{\|l\|l} \begin{array}{c} \text { occupp } \\ \text { (nedor } \\ \text { Temp } P \text { PF } \end{array} \\ \hline \end{array}$	$\underset{\substack{\text { Unocc. } \\ \text { Indor remp } \\ \text { [FF] }}}{\substack{\text {. } \\ \hline}}$	$\begin{array}{\|c} \begin{array}{c} \text { Cectup. } \\ \text { Deoproe } \\ \text { Hours [CD. } \\ \text { Hrs] } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Cooling } \\ \text { Coinge } \\ \text { Dours } \\ \text { Hours]- } \\ \text { Hrs] } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \begin{array}{c} \text { Total Cooling } \\ \text { Degree Hours } \\ \text { Co-Hrsss } \end{array} \\ \hline \end{array}$		$\begin{gathered} \text { Occup. } \\ \text { Bin Hours } \end{gathered}$	$\begin{gathered} \text { Unocc } \\ \text { Bin } \\ \text { Hours } \end{gathered}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { occup. } \\ \text { Indor } \\ \text { femp } \\ \text { eff } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Unoc. } \\ \text { lnoor } \\ \text { Tromp } \\ \text { Tef] } \\ {[} \end{array} \\ \hline \end{array}$			
						Building	Building	Section 1	Section 2	Section 2	Section2	Section 2	Section 2	Building											
COOLING $\quad 100$ to 105	102.5							72.0													76.0	85.0			
95 to 100	97.5				3	2	1	72.0	80.0	${ }_{5} 5$	15	70	-					70		1	76.0	85.0	${ }^{46}$	11	57
90 to 95	92.5		18		21	14		72.0	80.0	294	83	377	-					377	13	8	76.0	85.0	212	6_{1}	
855090	87.5		100	18	118	80	38	72.0	80.0	1,244	283	1,527						1,527	1	47	76.0	85.0	${ }^{821}$	16	
80 to 85	82.5	37	292	126	455	279	176	72.0	80.0	2,926	441	3,367	-	.				3,367	215	240	7.0	85.0	1,399		1,399
75 to 80	77.5	189	289	247	725	370	355	72.0	80.0	2,035		2,035	-	-				2,035	240	485	76.0	85.0	360		360
70 to 75	72.5	275	200	270	745	337	408	72.0	80.0	168		168	-					168	192	553	76.0	85.0			
65 to 70	67.5	236	184	245	665	304	361	72.0												491	78.0	85.0			
60065	62.5	232	158	196	586	261	325	72.0	80.0				-	-					154	432	76.0	85.0			
Total		969	1,244	1,105	3,318	1,647	1,671			6,722	822	7.544						7,544	1,062	2,256			2,839	188	3,027
Amb. Temp Bin [${ }^{\text {[}}$ [$]$	Ave Temp [$¢$ f]	01.08 Hours	09.16 Hours	17-24 Hours	$\begin{gathered} \text { Total Bin } \\ \text { Hours } \end{gathered}$	Occup. Bin Hours	$\begin{aligned} & \text { Unocc. } \\ & \text { Bin Hours } \end{aligned}$	$\begin{gathered} \text { Occup. } \\ \text { Indoor Temp } \\ {\left[{ }^{\circ} \mathrm{F}\right]} \end{gathered}$	$\begin{gathered} \text { Unocc. } \\ \text { Indoor Temp }\left[{ }^{\circ} \mathrm{F}\right] \end{gathered}$	$\begin{array}{\|c} \text { Occup. } \\ \text { Heating Degree } \\ \text { Hours [HD-Hrs] } \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { Unocc. } \\ \text { Heating Degree } \\ \text { Hours [HD-Hrss } \end{array}$	$\begin{array}{\|c} \text { Total Heating } \\ \text { Degree Hours } \\ \text { [H0-Hrs] } \end{array}$	$\left\lvert\, \begin{gathered} \text { occup. } \\ \text { ondor } \\ \text { Temp }[F] \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { Unoc. } \\ \hline \text { ndoor Temp } \\ \text { [ff] } \end{gathered}\right.$				$\substack{\text { Total Heating } \\ \text { alerge } \\ \text { Hours } \\ \text { His] }}$ Hid	$\begin{gathered} \text { Occup. } \\ \text { Bin Hours } \end{gathered}$	$\begin{aligned} & \text { Unocc. } \\ & \text { Bin } \\ & \text { Hours } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { occup. } \\ \text { Indor } \\ \text { Temp } \\ \text { feff } \end{array}$				
						Building	Building	Section 1	Section 2	Building															
Heating	575																					${ }^{55}$			
50 to 55	52.5	110	178	125	${ }_{413} 8$	${ }_{213}^{1213}$	132 200	77.0	60.0 60.0	2,992	329 1,499	2,441 5,41 1						2,311	101 147	${ }_{268}^{182}$	${ }_{68}^{68}$	55 55	1,065	666	1,065 2,941
45 to 50	47.5	108	164	121	393	201	192	71.0	60.0	4,716	2,404	7,120						7,120	136	257	68	55	2,97	1,924	4,721
40 to 45	42.5	240	251	280	771	370	401	71.0	60.0	10,555	7,011	17,566			-			17,566	222	549	${ }^{68}$	55	5,665	6,861	12,525
35 to 40	37.5	355	282	362	999	458	541	71.0	60.0	15,358	12,163	27,520						27,520	265	734	68	55		12,848	
30 to 35	32.5	239	120	167	526	221	305	71.0	60.0	8,511	8,386	16,897						16,897	128	398	68	55	4,558	8,996	13,504
25 to 30	27.5	109	76	${ }^{81}$	266	118	148	71.0	60.0	5,150	4,797	9,947						9,947	74	192	68	55	2,887	5,287	8,274
20 to 25	22.5	100	51	72	223	94	129	71.0	60.0	4,564	4,833	9,398						9,398	54	169	${ }^{68}$	${ }_{55}$	2,470	5,483	7,953
15 to 20	17.5		29	25		46	66	71.0	60.0	2,458	2,808	5,265						5,265	31	81	68	55	1,569	3,035	4,604
10 to 15	12.5	10	5	6	21	,	12	71.0	60.0	512	582	1,994						1,094	5	16	68	55	297	665	
5 to 10	7.5	8		1	9	2	7	71.0	60.0	145	353	498			-			498	1	8	68	55	86	360	446
0 to 5	2.5							71.0	60.0												${ }^{68}$	55	-		
-5600 -10 to 5	(2.5)							71.0	60.0		-										68 68	55 55 55			
-10 to -5 $-150-10$	(17.5)							71.0 71.0	60.0 60.0		$:$				$:$						68 68	[55		:	
Total		1,397	1,283	1,336	4,016	1,884	2,132			57,952	45,166	103,118						103,188	1,166	2,850			${ }_{31,846}$	46,074	77,21

Roosevelt UFSD, NY

ECM 6 - Building Management System Upgrades
WASHINGTON-ROSE ELEMENTARY SCHOOL

Amb. Temp Bin [${ }^{\text {f }}$]	Ave Temp [$¢$ F]	01.08 Hours	09.16 H	Hours		Current Operating schedule													Proposed Operating schedule						
					Total Bin Hours	$\begin{gathered} \text { Occup. Bin } \\ \text { Hours } \end{gathered}$	Unoc. Bin Hours	$\begin{gathered} \text { Occup. } \\ \text { Indoor Temp } \\ {\left[{ }^{\circ} \mathrm{F}\right]} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Unocc. } \\ \text { Indoor Temp [} \left.{ }^{\circ} \mathrm{F}\right] \\ \hline \end{array}$	$\left\|\begin{array}{c\|} \text { Occup. } \\ \text { Cooling Degree } \\ \text { Hours [CD-Hss] } \end{array}\right\|$	$\begin{gathered} \text { Unocc. } \\ \text { Cooling Degree } \\ \text { Hours [CD-Hrs] } \end{gathered}$	Total Cooling Degree Hours [CD-Hrs]		$\begin{gathered} \text { Unocc. } \\ \text { Indoor Temp } \\ {\left[{ }^{\circ} \mathrm{F}\right]} \end{gathered}$	$\begin{gathered} \text { cooling } \\ \text { Coige } \\ \text { Hourse } \\ \text { Hour } \\ \text { Hss } \end{gathered}$		Total Cooling Degree Hours [CD-Hrs]		$\left\lvert\, \begin{aligned} & \text { occup. } \\ & \text { Bin Hours } \end{aligned}\right.$		$\begin{array}{\|c} \text { occup. } \\ \text { ondor } \\ \text { teon } \\ \text { Pof } \end{array}$	$\begin{gathered} \text { Hocc. } \\ \text { ndor } \\ \text { cemp } \\ \text { eff } \end{gathered}$			
						Builiding	Building	Section 1	Section 2	Building															
100 to 105	102.5							74.0	80.0												76.0 750	85.0 850			
95to 100 90005	97.5		18					74.0	$\begin{array}{r}80.0 \\ 80 \\ \hline\end{array}$	$\begin{array}{r}71 \\ 388 \\ \hline\end{array}$		${ }_{31}^{788}$						${ }_{31}^{78}$		1	${ }_{7}^{76.0}$	85.0	${ }^{46}$	${ }^{11}$	57
90 to 95	92.5		18			21	0	74.0	80.0		0			.					13		76.0	85.0	212		273
85 to 90	87.		100	18	118	118	0	74.0	80.0	1,593		1,593						1,593	71	47	76.0	85.0	${ }^{821}$	116	
80 to 85	82.5	${ }^{37}$	292	${ }^{126}$	455	455	0	74.0	80.0	3,867	0	3,867						3,867	215	240	76.0	85.0	1,399		1,399
75 to 80	77.5	189	289	247	725	725	0	74.0	80.0	2,537		2,537						2,537	240	485	76.0	85.0	360		360
70 to 75	72.5	275	200	270	745	745	0	74.0	80.0										192	553	76.0	85.0			
65 to 70	67.5	236	184	245	665	665	0	74.0	80.0										174	491	76.0	${ }^{85.0}$			
60 to 65	62.5	232	158	196	586	586	0	74.0	80.0		-	-							154	432	76.0	85.0			
Total		969	1,244	1,105	3,318	3,318	0			8,457	0	8,457						8,457	1,062	2,256			2,839	188	3,02
Amb. Temp Bin [${ }^{\text {P }}$ [$]$	Ave Temp ${ }^{\text {P }}$ F]	01.08 Hours	09-16 Hours	17-24 Hours	$\begin{gathered} \text { Total Bin } \\ \text { Hours } \end{gathered}$	$\begin{gathered} \text { Occup. Bir } \\ \text { Hours } \end{gathered}$	$\begin{aligned} & \text { Unocc. } \\ & \text { Bin tours } \end{aligned}$	$\begin{gathered} \text { Occup. } \\ \text { Indor Temp } \\ {[f]} \end{gathered}$	Unocc. Indoor Temp [${ }^{\circ} \mathrm{F}$]	$\left\|\begin{array}{c\|} \text { Occup. } \\ \text { Heating Degree } \\ \text { Hours (HDD-Hss] } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { Unocc. } \\ \left.\begin{array}{c} \text { Heating Degree } \\ \text { Hours [HD-Hrss } \end{array} \right\rvert\, \end{gathered}\right.$	Total Heating Degree Hours [HD-Hrs]	$\begin{aligned} & \text { Occup. } \\ & \text { Indoor } \\ & \text { Temp }\left[{ }^{\circ} \mathrm{F}\right] \end{aligned}$	$\begin{gathered} \text { Unocc. } \\ \text { Indoor Tem } \\ {\left[{ }^{\circ} \mathrm{F}\right]} \end{gathered}$		$\begin{gathered} \text { Hexing } \\ \text { Hegre } \\ \text { Hours IH. Ho } \end{gathered}$	Total Heating Degree Hours [HD-Hrs]		Occup Bin Hours	$\begin{gathered} \left.\begin{array}{c} \text { Unocc. } \\ \text { is } \\ \text { Bin } \\ \text { Hours } \end{array} \right\rvert\, \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \begin{array}{c} \text { occup } \\ \text { Indoor } \\ \text { Tremp } \\ \text { Temf } \\ \text { Pf } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Unocc. } \\ \text { Indoor } \\ \text { Temp } \\ {\left[{ }^{\circ} \mathrm{F}\right]} \end{gathered}$		$\begin{gathered} \begin{array}{c} \text { Heoting } \\ \text { Heatine } \\ \text { Hours } \\ \text { HoL } \end{array} \\ \text { Hrs] } \end{gathered}$	
						Building	Building	Section 1	Section 2	Building															
Heating																									
554060	57.5	60	127	${ }_{96}$	283	283	0	71.0	60.0	3,820	0	3,820						3,820	101	182	${ }^{68}$	55	1.065		1,065
50 to 55	52.5	110	178	125	${ }^{413}$	${ }^{413}$	0	71.0	60.0	7,640		7,640						7,640	147	266	68	55	2,275	666	
45 to 50	47.5	108	164	121	393	393	0	71.0	60.0	9,235		9,235						9,235	136	257	68	55	2,977	1,924	4,721
40 to 45	42.5	240	251	280	771	771	0	71.0	60.0	21,973	0	21,973						21,973	222	549	68	55	5,665	6,861	12,525
35 to 40	37.5	355	282	362	999	999	0	71.0	60.0	33,466	\bigcirc	33,466						33,466	265	734	${ }^{68}$	55	8,077	12,848	20,925
30 to 35	32.5	239	120	167	526	526	,	71.0	60.0	20,251		20,251				.		20,251	128	398	${ }^{68}$	${ }_{5}^{55}$	4,558	8,946	
25 to 30	27.5	109	76	${ }^{81}$	266	266	-	71.0	60.0	11.571	\bigcirc	11.571						11,571	74	192	${ }^{68}$	${ }_{5}^{55}$	2,887	5,287	
20 to 25	22.5	100	51	72	${ }^{223}$	${ }^{223}$	0	71.0	60.0	10,815	\bigcirc	10,815		-	-			10,815	54	169	${ }^{68}$	55	2,470	5,483	7,953
15 to 20	17.5	58	29	25	112	112	0	71.0	60.0	5,992		5,992						5,992	31		68	55	1,569	3,035	4,604
10 to 15	12.5							71.0	60.0									1,228		16	${ }^{68}$	${ }_{5}^{55}$	297	665	
5 to 10	7.5	8		1		9	0	71.0	60.0	571	0	571						571	1	8	68	55	86	360	446
0 to 5	2.5							71.0	60.0												${ }^{68}$	55			
-5too	(2.5)							77.0	60.0												${ }^{68}$	${ }_{5}^{55}$			
-10 to - $-150-10$	(17.5)							71.0 71.0	60.0 60.0												68 68	55 55 5		:	
-15to-10								71.0														55			
Total		1,397	1,283	1,336	4.016	4,016	0			126,566	0	126,566						126,566	1,166	2.850			${ }_{31,886}$	46,074	77,921

Roosevelt UFSD, NY

ECM 6 - Building Management System Upgrades
UUSSESS BYAS ELEMENTARY SCHOOL

						Current Operating schedule													Proposed Operating schedule						
Amb. Temp Bin [${ }^{\text {P }}$ [$]$	Ave Temp [$¢$ f]	01.08 Hour	09.16 Hours	17-24 Hours	Total Bin Hours	Occup. Bin Hours	Unoc. Bin Hours	$\begin{gathered} \text { Occup. } \\ \text { Indoor Temp } \\ {\left[{ }^{\circ} \mathrm{F}\right]} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Unocc. } \\ \text { Indoor Temp [} \left.{ }^{\circ} \mathrm{F}\right] \\ \hline \end{array}$		$\begin{array}{c}\text { Unocc. } \\ \text { Cooling Degree } \\ \text { Hours [CD-Hrs] }\end{array}$	Total Cooling Degree Hours [CD-Hrs]		$\begin{gathered} \text { Unocc. } \\ \text { Indoor Temp } \\ {\left[{ }^{\circ} \mathrm{F}\right]} \end{gathered}$	$\begin{gathered} \text { cooling } \\ \text { coige } \\ \text { Hourse } \\ \text { Hour } \\ \text { Hss } \end{gathered}$		Total Cooling Degree Hours [CD-Hrs]	Total Cooling degree Hours HIs]	$\begin{aligned} & \text { Occup. } \\ & \text { Bin Hours } \end{aligned}$		$\begin{array}{\|c} \text { occup. } \\ \text { ondor } \\ \text { teon } \\ \text { Pof } \end{array}$	$\begin{gathered} \text { unoc. } \\ \text { notor } \\ \text { temp } \\ \text { cof } \end{gathered}$	$\begin{gathered} \text { cooing } \\ \text { coige } \\ \text { Hourse } \\ \text { Hours } \\ \text { His } \end{gathered}$		
						Builiding	Building	Section 1	Section 2	Building															
100 to 105	102.5							74.0	80.0		-										76.0 760	${ }^{85.0}$			
95to 100 90005	97.5		18			14	1	74.0	80.0		${ }^{15}$	${ }^{65}$						${ }^{65}$		1	${ }_{7}^{76.0}$	85.0	${ }^{46}$	${ }^{11}$	57
90 to 95	92.5		18			14		74.0	80.0					.					13		76.0	85.0	212		273
85 to 90	87.5		100	18	118	76	42	74.0	80.0	1,029	313	1,343						1,343	71	47	76.0	85.0	821	116	
80 to 85	82.5	${ }^{37}$	292	${ }^{126}$	455	251	204	74.0	80.0	2,130	511	2,641						2,641	215	240	76.0	85.0	1,399		1,399
75 to 80	77.5	189	289	247	725	315	410	74.0	80.0	1,102		1,102						1,102	240	485	76.0	85.0	360		360
70 to 75	72.5	275	200	270	745	27	468	74.0	80.0										192	553	76.0	85.0			
65 to 70	67.5	${ }_{2}^{236}$	$\begin{array}{r}184 \\ 158 \\ \hline\end{array}$	${ }^{295}$	${ }_{6}^{665}$	250	${ }_{4}^{415}$	74.0	80.0										174	491	${ }^{76.0}$	${ }^{85.0}$			
600665	62.5	232	158	196	586	217	369	74.0	80.0			-							154	432	76.0	85.0			
Total		969	1,244	1,105	3,318	1,401	1,917			4,564	931	5,995						5,495	1.062	2,256			2,839	188	3,027
Amb. Temp Bin [f] ${ }^{\text {¢ }}$	Ave Temp [f]	01.08 Hours	09.16 Hours	17-24 Hours	$\begin{gathered} \text { Total Bin } \\ \text { Hours } \end{gathered}$	$\begin{gathered} \text { Occup. Bir } \\ \text { Hours } \end{gathered}$	Unocc. Bin Hours	$\begin{gathered} \text { Occup. } \\ \text { Indoor Temp } \\ {\left[{ }^{\circ} \mathrm{Fl}\right.} \end{gathered}$	$\begin{array}{\|c} \text { Unocc. } \\ \text { Indoor Temp }\left[{ }^{\circ} \mathrm{F}\right] \end{array}$	$\left\|\begin{array}{c\|} \text { Occup. } \\ \text { Heating Degree } \\ \text { Hours (HDD-Hss] } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { Unocc. } \\ \left.\begin{array}{c} \text { Heating Degree } \\ \text { Hours [HD-Hrss } \end{array} \right\rvert\, \end{gathered}\right.$	Total Heating Degree Hours [HD-Hrs]		$\begin{gathered} \text { Unocc. } \\ \text { Indoor Tem } \\ {\left[{ }^{\circ} \mathrm{F}\right]} \end{gathered}$		$\begin{gathered} \text { Hexing } \\ \text { Hegre } \\ \text { Hours IH. Ho } \end{gathered}$	Total Heating [HD-Hrs]			$\begin{gathered} \left.\begin{array}{c} \text { Unocc. } \\ \text { is } \\ \text { Bin } \\ \text { Hours } \end{array} \right\rvert\, \end{gathered}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { occup. } \\ \text { lndoor } \\ \text { Teomp } \\ \text { Teff } \\ \hline \end{array} \\ \hline \end{array}$			$\begin{gathered} \begin{array}{c} \text { Heoting } \\ \text { Heatine } \\ \text { Hours } \\ \text { HoL } \end{array} \\ \text { Hrs] } \end{gathered}$	
						Building	Building	Section 1	Section 2	Building															
HEating																									
554060	57.5	60	127	${ }_{96}$	283	130	153	71.0	60.0	1,753	383	2,136						2,136	101	182	${ }^{68}$	55	1,065		1,065
50 to 55	52.5	110	178	125	${ }^{413}$	185	228	71.0	60.0	3,426	1,709	5,134						5,134	147	266	68	55	2,275	666	
45 to 50	47.5	108	164	121	393	174	219	71.0	60.0	4,081	2,742	6,823						6,823	136	257	68	55	2,977	1,924	4,721
40 to 45	42.5	240	251	280	771	308	463	71.0	60.0	8,774	8,105	16,879						16,879	222	549	68	55	5,665	6,861	12,525
35 to 40	37.5	355	282	362	999	378	${ }^{621}$	71.0	60.0	12,651	13,981	26,631						26,631	265	734	${ }^{68}$	55	8,077	12,848	20,925
30 to 35	32.5	239	120	167	526	184	${ }^{34}$	71.0	60.0	7,076		16,487						16,487	128	398	${ }^{68}$	${ }_{5}^{55}$	4,558	8,946	
25 to 30	27.5	109	76	${ }^{81}$	266	100	166	71.0	60.0	4,364	5,385	9,748						9,778		192	${ }^{68}$	${ }_{5}^{55}$	2,887	5,887	
20 to 25	22.5	100	${ }_{51}$	72	${ }^{223}$	78	145	71.0	60.0	3,785	5,436	9,221		-	-			9,221	54	169	${ }^{68}$	55	2,470	5,483	7,953
15 to 20	17.5	58	29	25	112	40	72	71.0	60.0	2,159	3,045	5,204				-		5,204	31		68	55	1,569	3,035	4,604
10 to 15	12.5							71.0	60.0									1,079	5	16	${ }^{68}$	55	297		
5 to 10	7.5	8		1		2	7	71.0	60.0	130	365	495						495	1	8	68	55	86	360	446
0 to 5	2.5							71.0	60.0												68	55			
-5too	(2.5)							77.0	60.0													${ }_{5}^{55}$			
- 10 to -5 $-150-10$	(17.5) (12.5)							71.0 71.0	60.0 60.0		-										68 68	55 55 5		:	
-15to-10								71.0														55			
Total		1,397	1,283	1,336	4.016	1.586	2,430			${ }_{48,632}$	51,206	${ }_{9,887}$						99,837	1,166	2.850			31,846	46,074	77,921

Roosevelt UFSD, NY

EXChitit -.5-6;
ECM 6 - Building Management System Upgrades
ROOSEVELT MIDDLE SCHOOL

						Current Operating Schedule													Proposed Operating schedule						
Amb. Temp Bin [${ }^{\circ}$]	Ave Temp [$¢$ [$]$	01.08 Hours	09.16 Hours	17-2	$\begin{gathered} \text { Total Bin } \\ \text { Hours } \end{gathered}$	Occup. Bin Hours	Unocc. Bin Hours	$\begin{gathered} \text { Occup. } \\ \text { Indoor Temp } \\ {\left[{ }^{\circ} \mathrm{F}\right]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Unocc. } \\ \text { Indoor Temp [} \left.{ }^{\circ} \mathrm{F}\right] \\ \hline \end{array}$	Occup. Cooling Degree Hours [CD-Hrs]	$\begin{array}{c}\text { Unocc. } \\ \text { Cooling Degree } \\ \text { Hours [CD-Hss] }\end{array}$	Total Cooling Degree Hours [CD-Hrs]	$\left[\left.\begin{array}{c} \text { occup. } \\ \text { octor } \\ \text { Tempor }[f] \end{array} \right\rvert\,\right.$	$\begin{array}{\|c} \text { Unocr. } \\ \text { Indorctemp } \\ {[F]} \end{array}$		$\begin{gathered} \text { cooling } \\ \text { coige } \\ \text { Hourse } \\ \text { Hours } \end{gathered}$	$\begin{array}{\|c} \text { Total Cooling } \\ \text { Degree Hours } \\ \text { [CD-Hrs] } \end{array}$	$\begin{gathered} \text { Totat Cooling } \\ \text { opere } \\ \text { Hours cic. } \end{gathered}$	$\begin{aligned} & \text { Occup. } \\ & \text { Bin Hour: } \end{aligned}$	$\left\|\begin{array}{c} \text { Unocac. } \\ \text { sin } \\ \text { Hours } \end{array}\right\|$	$\begin{array}{\|c} \text { occup. } \\ \text { cor } \\ \text { remp } \\ \text { en } \end{array}$				Total Cooling olegre Hours Hisb
						Building	Building	Section 1	Section 2	Building															
cooling																									
$\begin{gathered} 100 \text { to } 105 \\ \hline 95 \text { to } 100 \end{gathered}$	$\begin{array}{r}102.5 \\ 97.5 \\ \hline\end{array}$							74.0 74.0	80.0 80.0	50	15	65						65		${ }^{-}$	76.0 76.0	85.0 85.0	46		
${ }_{90 \text { to } 95}$	92.5		18	3	21	15		74.0	80.0	277	75	352						352	13	8	76.0	${ }_{85.0}$	221		278
85 to 90	87.5		100	18	118	84	34	74.0	80.0	1,138	253	1,391		-				1,391	75	43	76.0	85.0	858	108	967
${ }^{80}$ to 85	82.5	37	292	${ }^{126}$	455	315	${ }^{140}$	74.0	80.0	2,678	350	3,028						3,028	238	217	76.0	85.0	1,545		1,545
75 to 80	77.5	189	289	247	725	467	258	74.0	80.0	1,635		1,635						1,635	284	441	76.0	85.0	426		426
70 to 75	72.5	275	200	270	745	458	287	74.0	80.0										240	505	76.0	85.0			
65 to 70	67.5	236	184	245	665	412	253	74.0	80.0										217	448	76.0	85.0			
60 to 65	62.5	232	158	196	586	356	230	74.0	80.0	\cdot	-								189	397	76.0	85.0			
Total		969	1,244	1,105	3,318	2,110	1,208			5,779	693	6,472						6,472	1,259	2.059			3,097	176	3,273
Amb. Temp Bin [${ }^{[8]}$	Ave Temp [${ }^{\text {c }}$]	01.08 Hours	09.16 Hours	17-24 Hours	$\begin{gathered} \text { Total Bin } \\ \text { Hours } \end{gathered}$	$\begin{gathered} \text { Occup. Bin } \\ \text { Hours } \end{gathered}$	$\begin{aligned} & \text { Unocc. } \\ & \text { Bin Hours } \end{aligned}$	$\begin{array}{\|c} \begin{array}{c} \text { Occup. } \\ \text { Indoor Temp } \\ \text { [F] } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { Unocc. } \\ \text { Indoor Temp [} \left.{ }^{\circ} \mathrm{F}\right] \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { Occup. } \\ \text { Heating Degree } \\ \text { Hours [HD-Hrs] } \\ \hline \end{array}$	$\begin{array}{\|c} \text { Unocc. } \\ \begin{array}{l} \text { Heating Degree } \\ \text { Hours [HD-Hrs] } \end{array} \\ \hline \end{array}$			$\begin{array}{\|c} \begin{array}{c} \text { Unococ. } \\ \text { ndoor Temp } \\ {[f]} \end{array} \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Heatioting } \\ \text { Dearee } \\ \text { Hours [HD. } \\ \text { Hrs] } \end{array} \\ \hline \end{array}$			$\begin{aligned} & \text { occup. } \\ & \text { Bin Hours } \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \text { Unocc. } \\ \text { Bin } \\ \text { Hours } \\ \hline \end{array}$		$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Unoce. } \\ \text { lnoor } \\ \text { Tromp } \\ \text { TFF] } \\ \hline[\end{array} \\ \hline \end{array}$		$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Hearige } \\ \text { Hours IHD- } \\ \text { His] } \end{array}$	$\substack{\text { Total Heating } \\ \text { olegee } \\ \text { Hours } \\ \text { HIs] }}$
						Building	Building	Section 1	Section 2	Building															
HEATING 55 to 60							97			2.698		2,940								164	68		1,245		
50 to 55	52.5	110	178	125	413	266	147	72.0	60.0	5.178	1,106	6,284						6,284	169	244	68	55	2,621	610	1,245
${ }_{45} 5$ to 50	47.5	108	164	121	393	252	141	72.0	60.0	6,169	1,765	7,934						7,934	158	235	${ }_{68}$	5	3,240 1260	${ }_{1,762}$	
40 to 45	42.5	240	251	280	771	486	285	72.0	60.0	14,350	4,980	19,330						19,30	272	499	${ }_{68}$	55	6,940	6,236	13,175
355040	37.5	355	282	362	999	618	381	72.0	60.0	21,388	8,562	29,899						29,899	329	670	68	55	10,049	11,717	21,766
30 to 35	32.5	239	120	167	526	312	214	72.0	60.0	12,312	5,893	18,205						18,205	158	368	68	55	5,617	8,275	13,892
25 to 30	27.5	109	76	81	266	161	105	72.0	60.0	7,156	3,419	10,575						10,575	88	178	${ }^{68}$	${ }_{5}^{55}$	3,573	4,889	
20 to 25	22.5	100	51	72	223	132	,	72.0	60.0	6,559	3,394	9,952			-			9,952	67	156	68	55	3,055	5,065	8,120
15 to 20	17.5	58	29	25	112	64	48	72.0	60.0	3,513	2,020	5,534						5,534	36	76	68	55	1,795	2,867	
10 to 15	12.5							72.0	60.0										6	15	${ }^{68}$	55	357		
5 to 10	7.5	8		1	9	4	5	72.0	60.0	276	248	524						524	,	7	68	55	97	351	448
0 to 5	2.5							72.0	60.0												${ }^{68}$	55			
-5to 0	${ }_{\text {12,5 }}^{12.5}$							72.0 720	60.0 600												${ }_{68}^{68}$	55			
- $\begin{aligned} & -10 \text { to }-5 \\ & -150-10\end{aligned}$	(17.5)							72.0 72.0	60.0 60.0									$:$			68 68	55			
-15 to- 10	(12.5)						-	72.0	60.0						-		-				68	55		-	
Total		1.397	1,283	1,336	4.016	2,994	1,522			80,81]	32,041	112,322						112,322	1,404	2,612			38,587	42,392	80,979

Roosevelt UFSD, NY

ECKM 6 - Building Management System Upgrades
Ex.5.
ROOSEVELTHIGH SCHOOL

						Current Operating Schedule													Proposed Operating schedule						
Amb. Temp Bin [${ }^{\text {F }}$]	Ave Temp [$¢$]	01.08 Hours	09.16 Hours	17-2	$\begin{gathered} \text { Total Bin } \\ \text { Hours } \end{gathered}$	$\begin{gathered} \text { Occup. Bin } \\ \text { Hours } \end{gathered}$	$\begin{aligned} & \text { Unocc. } \\ & \text { Bin Hours } \end{aligned}$	$\begin{gathered} \text { Occup. } \\ \text { Indoor Temp } \\ {\left[{ }^{\circ} \mathrm{F}\right]} \\ \hline \end{gathered}$	Unocc. Indoor Temp [$\left.{ }^{\circ} \mathrm{F}\right]$		$\begin{array}{c}\text { Unocc. } \\ \text { Cooling Degree } \\ \text { Hours [CD-Hss] }\end{array}$	Total Cooling Degree Hours [CD-Hrs]	$\left[\left.\begin{array}{c} \text { occup. } \\ \text { octor } \\ \text { Tempor }[f] \end{array} \right\rvert\,\right.$			$\begin{gathered} \text { cooing } \\ \text { coige } \\ \text { Hours } \\ \text { Hurs. } \end{gathered}$	$\begin{array}{\|c} \text { Total Cooling } \\ \text { Degree Hours } \\ \text { [CD-Hrs] } \end{array}$		$\begin{aligned} & \text { Occup. } \\ & \text { Bin Hour: } \end{aligned}$	$\left\|\begin{array}{c} \text { Unocac. } \\ \text { sin } \\ \text { Hours } \end{array}\right\|$	$\begin{array}{\|l\|l\|} \hline \text { occup. } \\ \text { Indoor } \\ \text { Teomp } \\ \text { Temf } \\ \text { P/ } \end{array}$			$\begin{gathered} \text { cooling } \\ \text { Coige } \\ \text { Hours cli. } \end{gathered}$	
						Building	Building	Section 1	Section 2	Building															
cooling																									
$\frac{100 \text { to } 105}{95 \text { to } 100}$	$\begin{array}{r}102.5 \\ 97.5 \\ \hline\end{array}$							73.0 73.0	80.0 80.0	53	15	68						68		${ }^{-}$	76.0 76.0	85.0 85.0	46		
${ }_{90 \text { to } 95}$	92.5		18	3	21	14		73.0	80.0	277	${ }_{25}$	362						362	13	8	76.0	${ }_{85.0}$	221		278
85 to 90	87.5		100	18	118	79	39	73.0	80.0	1,152	289	1,441		-				1,441	75	43	76.0	85.0	858	108	967
${ }^{80}$ to 85	82.5	37	292	${ }^{126}$	455	271	184	73.0	80.0	2,579	459	3,037						3,037	238	217	76.0	85.0	1,545		1,545
75 to 80	77.5	189	289	247	725	350	375	73.0	80.0	1,577		1,577						1,577	284	441	76.0	85.0	426		426
7007075	72.5	275	200	270	745	312	433	73.0	80.0										240	505	76.0	85.0			
65 to 70	67.5	236	184	245	665	283	382	73.0	80.0										217	448	76.0	85.0			
60 to 65	62.5	232	158	196	586	242	344	73.0	80.0	-									189	397	7.0	85.0			
Total		969	1,244	1,105	3,318	1.555	1,763			5,637	848	6,485						6,485	1,259	2.059			3,097	176	3,273
Amb. Temp Bin [${ }^{[8]}$	Ave Temp [${ }^{\text {c }}$]	01.08 Hours	09.16 Hours	17-24 Hours	$\begin{gathered} \text { Total Bin } \\ \text { Hours } \end{gathered}$	$\begin{gathered} \text { Occup. Bin } \\ \text { Hours } \end{gathered}$	$\begin{aligned} & \text { Unocc. } \\ & \text { Bin Hours } \end{aligned}$	$\begin{array}{\|c} \begin{array}{c} \text { Occup. } \\ \text { Indoor Temp } \\ \text { [F] } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|c} \text { Unocc. } & \mathrm{H} \\ \text { Indoor Temp [} \left.{ }^{\circ} \mathrm{F}\right] & \mathrm{H} \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { Occup. } \\ \text { Heating Degree } \\ \text { Hours [HD-Hrs] } \\ \hline \end{array}$	$\begin{array}{\|c} \text { Unocc. } \\ \begin{array}{l} \text { Heating Degree } \\ \text { Hours [HD-Hrs] } \end{array} \\ \hline \end{array}$					$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Heatioting } \\ \text { Dearee } \\ \text { Hours [HD. } \\ \text { Hrs] } \end{array} \\ \hline \end{array}$			$\begin{aligned} & \text { occup. } \\ & \text { Bin Hours } \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \text { Unocc. } \\ \text { Bin } \\ \text { Hours } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { occup. } \\ \text { Indor } \\ \text { Temp } \\ \text { epf } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Unoce. } \\ \text { lnoor } \\ \text { Tromp } \\ \text { TFF] } \\ \hline[\end{array} \\ \hline \end{array}$		$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Hearige } \\ \text { Hours IHD- } \\ \text { His] } \end{array}$	$\substack{\text { Total Heating } \\ \text { olegee } \\ \text { Hours } \\ \text { HIs] }}$
						Building	Building	Section 1	Section 2	Building															
HEATING 55 to 60					283		139			1,948								2,295	119	164	68	55	1,245		
50 to 55	52.5	110	178	125	413	203	210	71.0	60.0	${ }_{3,778}^{1,}$	1,578	5,326						5,326	169	244	68	55	2,621	610	1,245
${ }_{45} 5$ to 50	47.5	108	164	121	393	190	203	71.0	60.0	4,475	2,532	7,007						7,007	158	235	${ }_{68} 6$	5	3,240 1260	${ }_{1,762}$	5,002
40 to 45	42.5	240	251	280	771	347	424	71.0	60.0	9,894	7,418	17,311						17,311	272	499	${ }_{68}$	55	6,940	6,236	13,175
355040	37.5	355	282	362	999	426	573	71.0	60.0	14,285	12,883	27,168						27,168	329	670	6	55	10,049	11,717	21,766
30 to 35	32.5	239	120	167	526	203	323	71.0	60.0	7,813	8,884	16,697						16,997	158	368	68	55	5,617	8,275	13,892
25 to 30	27.5	109	76	81	266	110	156	71.0	60.0	4,781	5,073	9,854						9,854	88	178	${ }^{68}$	${ }_{5}^{55}$	3,573	4,889	
20 to 25	22.5	100	51	72	223	86	137	71.0	60.0	4,192	5,121	9,313			-			9,313	67	156	68	55	3,055	5,065	8,120
15 to 20	17.5	58	29	25	112	42	70	71.0	60.0	2,259	2,965	5,225						5,225	36	76	68	55	1,795	2,867	
10 to 15	12.5							71.0	60.0										6	15	${ }^{68}$	55	357		
5 to 10	7.5	8		1	9	2	7	71.0	60.0	119	374	493						493	,	7	68	55	97	351	448
0 to 5	2.5							71.0	60.0												68	55			
-5to 0	${ }_{\text {12,5 }}^{12.5}$							71.0	60.0												${ }_{68}^{68}$	55			
- $\begin{aligned} & -10 \text { to }-5 \\ & -150-10\end{aligned}$	(17.5)							71.0 71.0	60.0 60.0									$:$			68	55 55 55			
-15 to- 10	(12.5)						-	71.0	60.0				-				-				68	55		-	
Total		1.397	1,283	1,336	4.016	1,762	2,254			53,85	47,90	101,776						101,776	1,404	2,612			38,587	42,392	80,979

Roosevelt UFSD, NY

ECM 6 - Build ding Management System Upgrades
SAVINGS SUMMARY

Building ID	h saving	kw Savings	ermal Savings	$\underbrace{\text { a }}_{\substack{\text { mal sfitety } \\ \text { fator }}}$	
	kwh	kw	Therms	\%	\%
Centennial venue Elementar School	${ }^{72,063}$		6,899	5.0\%	5.0\%
Washington-Rose Elementary School	${ }^{131,587}$		13,141	30.0\%	10.\%
Ulyses Syas lementary school	18,194		10,657	5.0\%	0.0\%
Rossevel Midald School	153,598		18,660	5.0\%	0.0\%
Roosevelt tigh School	74,200		14,994	5.0\%	0.0\%
Subtotal	499,642		64,351		

Roosevelt UFSD, N

Exhibit D-5-6,
ECM 6- Building Management System Upgrades
Demand Control Ventilation
ECM Description
mplement demand control ventilation strategies where applicable to modulate outside air volume based on space occupancy (CO2 levels)
DATA / ASSUMPTIONS
Heating Season Hours $\quad 4,016$ Hours
nts, and design drawings
** Proposed temperature setpoints are used as not to duplicate thermal savings

commissioning

CO_{2} signal during the building warm up, etc.).

RECOVERY/SAFETY FACTOR

0\%
formulae

$\mathrm{KW}_{\text {Fan }}=\mathrm{HP} \cdot 0.746 \cdot \mathrm{M}_{\text {\% }}$

Variable	JUnits	Description
$\mathrm{w}_{\text {Salw }}$	kWh	Annual kWh Savings
$\mathrm{a}_{\text {savucs }}$	Therms	Annual Thermal Savings
$a_{\text {Lado }}$	MBTUn	Thermal load rate of unit at respective temperature bin
$\mathrm{kW}_{\text {fan }}$	kw	Total kW of fan
$\Sigma^{60}{ }_{15}$	-	Summation of all bins from $-15^{\circ} \mathrm{F}$ to $60^{\circ} \mathrm{F}$
$T_{\text {bin }}$	${ }^{\circ}$	Temperature of respective bin
tocceprooosio	Hrs	Proposed occupied bin hours in respective temperature bin
Uunocciproposio	Hrs	Proposed unoccupied bin hours in respective temperature bin
RPM-\%	\%	Percentage of RPM fan will be reduced due to VFD
OAmocc	\%	Percentage fresh air reduction during occupied hours
OA\&wnocc	\%	Percentage fresh air reduction during unoccupied hours
$\mathrm{CFM}_{\text {OA }}$	CfM	Total outside air CFM of units
Toccrpoorssio	${ }^{\circ} \mathrm{F}$	Proposed occupied heating temperature
Tunoc.r.foroses	${ }^{\circ} \mathrm{F}$	Proposed unoccupied heating temperature
M\%	\%	Motor load factor
HP	нр	Motor horsepower
nsouter	\%	Boiler fficiency

Roosevelt UFSD, NY

Exhibit D-5-6
Demand Control Ventilation
*Inputs are in blue

Building	Location	nit aty	Total Fan Motor Horsepower [HP]	Total Supply Airflow [CFM]	Total Outside Airflow [CFM]	Proposed Boile Efficiency [\%]
Centennial Avenue Elementary School	Gym		7.5	7,200	4,630	79.0\%
Washington-Rose Elementary School	Gym	1	7.5	8,000	4,389	89.0\%
Ulysses Byas Elementary School	Gym	1	15.0	12,000	4,389	81.0\%
Roosevelt High school	Aud	1	20.0	9,116	7,704	89.0\%
Roosevelt Middle School	Gym	1	20.0	14,100	3,626	89.0\%
Roosevelt tigh School	Library	1	5.0	4,500	1,943	89.0\%
tals		Hen [
		Washington-				
	Centennial Avenue Elementary Schoo	Elementary School	Elementary School	Roosevelt High School	$\begin{gathered} \text { Roosevelt } \\ \text { Middle School } \end{gathered}$	$\begin{array}{\|c} \text { Roosevelt High } \\ \text { School } \end{array}$
ation	Gym	Gym	Gym	Aud	Gym	Library
Unit Quantity	1					
Total Fan Motor Horsepower [HP]	7.5	7.5	15.0	20.0	20.0	5.0
Motor Load Factor [\%]	65\%	65\%	65\%	65\%	65\%	65\%
Motor kW Total [KW]	3.64	3.64	7.27	9.70	9.70	2.42
Total Supply Airflow [CFM]	7,200	8,000	12,000	9,116	14,100	4,500
Total Outside Airflow [CFM]	4,630	4,389	4,389	7,704	3,626	1,943
**Proposed Occ. Heating Setpoint $\left[\right.$ [${ }^{\text {P }}$]	68.0	68.0	68.0	68.0	68.0	68.0
**Proposed Unocc. Heating Setpoint [$\left.{ }^{\circ} \mathrm{F}\right]$	55.0	55.0	55.0	55.0	55.0	55.0
**Proposed Occ. Cooling Setpoint [$\left.{ }^{\circ}\right]$	76.0	76.0	76.0	76.0	76.0	76.0
**Proposed Unocc. Cooling Setpoint [${ }^{\circ}$]	85.0	85.0	85.0	85.0	85.0	5.0
Proposed Boile Efficiency $\%$ \%	79.0\%	89.0\%	81.0\%	89.0\%	89.0\%	89.0
Average Fan Speed Reduction [\%]	0\%	0\%	\%	0\%	0\%	0\%
Average Occupied Heating Reduction [\%]	20\%	20\%	20\%	20\%	20\%	20\%
Average Unoccupied Heating Reduction [\%]	25\%	25\%	25\%	25\%	25\%	25\%
Electric Safety Factor [\%]	0\%	\%\%	0\%	0\%	\%\%	\%\%
Thermal Safety Factor [\%]	0\%	\%	0\%	\%	\%	\%
Electrical Saving [kWh]						
Thermal Savings [Therms]	944	794	872	1,376	648	347

Roosevelt UFSD, NY

Exhibit D-5-6
ECM 6- Building Managemen
Demand Control Ventilation
calculations

Centennial avenue elementary school gym

Amb. Temp Bin [${ }^{\text {F }}$]	Ave Temp [${ }^{\text {Pr] }}$	01-08 Hours	09-16 Hours	17-24 Hours	Total Bin Hours	Occ. Bin Hours	Unocc. Bin Hours	Outside Air Flowrate [CFM]	OA Air Load [MBTUh]		Annual Occ. Heating Savings [MmBTU]	$\begin{array}{\|c} \text { Annual Unocc. } \\ \text { Heating } \\ \text { Savings } \\ \text { [MMBTU] } \end{array}$	$\left\|\begin{array}{c} \text { Total Heating } \\ \text { Savings } \\ \text { [Therms] } \end{array}\right\|$
HEATING													
55 to 60	57.5	60	127	96	283	101	182	4,630	-	-			
50 to 55	52.5	110	178	125	413	147	266	4,630	12.5	-	0.4	0.8	15
45 to 50	47.5	108	164	121	393	136	257	4,630	37.5	-	1.0	2.4	43
40 to 45	42.5	240	251	280	771	222	549	4,630	62.5	-	2.8	8.6	144
35 to 40	37.5	355	282	362	999	265	734	4,630	87.5	-	4.6	16.1	262
30 to 35	32.5	239	120	167	526	128	398	4,630	112.5	-	2.9	11.2	178
25 to 30	27.5	109	76	81	266	74	192	4,630	137.5	-	2.0	6.6	109
20 to 25	22.5	100	51	72	223	54	169	4,630	162.5	-	1.8	6.9	109
15 to 20	17.5	58	29	25	112	31	81	4,630	187.5	-	1.2	3.8	63
10 to 15	12.5	10	5	6	21	5	16	4,630	212.5	-	0.2	0.8	13
5 to 10	7.5	8	-	1	,	1	8	4,630	237.5	-	0.1	0.4	7
0 to 5	2.5	-	-	-	-		-	4,630	262.5	-			-
-5to 0	-2.5	-	-	-	-	-	-	4,630	287.5	-	-	-	-
-10 to-5	-7.5	-	-	-	-			4,630	312.5	-	.		-
-15 to - 10	-12.5	-	-	-	-	-	-	4,630	337.5	-	-	-	\cdot
Total		1,397	1,283	1,336	4,016	1,166	2,850			-	16.9	57.6	944

WASHINGTON-ROSE ELEMENTARY SCHOO
Gym

Amb. Temp Bin [${ }^{\text {F] }]}$	Ave Temp [${ }^{\text {P] }]}$	01-08 Hours	09-16 Hours	17-24 Hours	Total Bin Hours	Occ. Bin Hours	Unocc. Bin Hours	$\underset{\text { Outside Air }}{\text { Flowrate [CFM] }}$	OA Air Load [MBTUh]		Annual Occ. Heating Savings [MMBTU]	Annual Unocc. Heating Savings [MMBTU]	Total Heating Savings [Therms
HEATING													
55 to 60	57.5	0	127	96	283	101	182	4,389	-	-	-	-	-
50 to 55	52.5	110	178	125	413	147	266	4,389	11.9	-	0.3	0.8	13
45 to 50	47.5	108	164	121	393	136	257	4,389	35.6		1.0	2.3	37
40 to 45	42.5	240	251	280	771	222	549	4,389	59.3	-	2.6	1	121
35 to 40	37.5	355	282	362	999	265	734	4,389	83.0	-	4.4	15.2	220
30 to 35	32.5	239	120	167	526	128	398	4,389	106.7	-	2.7	10.6	150
25 to 30	27.5	109	76	81	266	74	192	4,389	130.4	-	1.9	3	92
20 to 25	22.5	100	51	72	223	54	169	4,389	154.1	-	1.7	6.5	92
15 to 20	17.5	58	29	25	112	31	81	4,389	177.8	-	1.1	3.6	53
10 to 15	12.5	10	5	6	21	5	16	4,389	201.5	.	0.2	0.8	11
5 to 10	7.5	8	.	1	9	1	8	4,389	225.2	-	0.1	0.4	6
0 to 5	2.5		.					4,389	248.9	-			
-5to 0	-2.5	-	-	-	-	-	-	4,389	272.6	-	-	-	
-10to-5	-7.5	-	-	-	-	.	-	4,389	296.3	-	-	-	
-15 to - 10	-12.5	-	-	-	-	-	-	4,389	320.0	-	-	-	
Total		1397	1.283	1.336	4.016	1.166	2.850				16.	54.6	794

Roosevelt UFSD, NY

Exhibit D-5-6
ECM 6 - Building Management System Upgrades
Demand Control Ventieta
ULYSSES BYAS ELEMENTARY SCHOOL
GYM

Amb. Temp Bin [${ }^{\text {Pr }}$]	Ave Temp [${ }^{\text {fr }}$]	01-08 Hours	09-16 Hours	17-24 Hours	Total Bin Hours	Occ. B Bi Hours	Unocc. Bin Hours	Outside Air Flowrate [CFM]	OA Air Load [MBTUh]	$\left\|\begin{array}{c} \text { Annual Fan } \\ \text { Electrical } \\ \text { Savings [kWh] } \end{array}\right\|$	Annual Occ. Heating Savings [MMBTU	$\begin{aligned} & \text { Annual Unocc. } \\ & \text { Heating } \\ & \text { Savings } \\ & \text { [MMBTU] } \\ & \hline \end{aligned}$	Total Heatin Savings [Therms]
HEATING													
55 to 60	57.5	60	127	96	283	101	182	4,389	.	-		-	
50 to 55	52.5	110	178	125	413	147	266	4,389	11.9		0.3	0.8	14
45 to 50	47.5	108	164	121	393	136	257	4,389	35.6	-	1.0	2.3	40
40 to 45	42.5	240	251	280	771	222	549	4,389	59.3	-	2.6	8.1	133
35 to 40	37.5	355	282	362	999	265	734	4,389	83.0	-	4.4	15.2	242
30 to 35	32.5	239	120	167	526	128	398	4,389	106.7		2.7	10.6	165
25 to 30	27.5	109	76	81	266	74	192	4,389	130.4	-	1.9	6.3	101
20 to 25	22.5	100	51	72	223	54	169	4,389	154.1	.	1.7	6.5	101
15 to 20	17.5	58	29	25	112	31	81	4,389	177.8	-	1.1	3.6	58
10 to 15	12.5	10	5	6	21	5	16	4,389	201.5	-	0.2	0.8	12
5 to 10	7.5	8	-	1	9	1	8	4,389	225.2		0.1	0.4	6
0 to 5	2.5	-	-	-	-	-	-	4,389	248.9	-	-	-	
-5to 0	-2.5	-	-	-	-	-	-	4,389	272.6	-	-	-	
-10 to -5	-7.5	-	-	-	-	-	-	4,389	296.3	-	-	-	-
-15 to - 10	-12.5			-				4,389	320.0		-	-	
Total		1,397	1,283	1,336	4,016	1,166	2,850				16.1	54.6	872

ROOSEVELT HIGH SCHOOL
AUD

Roosevelt UFSD, NY

Exhibit D-5-6
ECM 6 - Building Management System Upgrades
Demand Control Venti
ROOSEVEIT MIDDLE SCHOOL GYM

Amb. Temp Bin [${ }^{\text {f] }]}$	Ave Temp [${ }^{\text {Pr }}$]	01-08 Hours	09-16 Hours	17-24 Hours	Total Bin Hours	Occ. Bin Hours	Unocc. Bin Hours	$\left.\begin{array}{c}\text { Outside Air } \\ \text { Flowrate }[\text { [CFM] }\end{array}\right]$	OA Air Load [MBTUh]	Annual Fan Electrical Savings [kWh]	Annual Occ. Heating Savings [MMBTU]	$\begin{aligned} & \text { Annual Unocc. } \\ & \text { Heating } \\ & \text { Savings } \\ & \text { [MMBTU] } \end{aligned}$	Total Heating Savings [Therms [Therm
Heating													
55 to 60	57.5	60	127	96	283	119	164	3,626		.			
50 to 55	52.5	110	178	125	413	169	244	3,626	9.8	-	0.3	0.6	10
45 to 50	47.5	108	54	121	393	158	235	3,626	29.4	-	0.9	1.7	30
40 to 45	42.5	240	251	280	771	272	499	3,626	49.0	-	2.7	6.1	99
35 to 40	37.5	355	282	362	999	329	670	3,626	68.5	-	4.5	11.5	180
30 to 35	32.5	239	120	167	526	158	368	3,626	88.1	-	2.8	8.1	122
25 to 30	27.5	109	76	81	266	88	178	3,626	107.7	-	1.9	4.8	75
20 to 25	22.5	100	51	72	223	67	156	3,626	127.3	.	1.7	5.0	75
15 to 20	17.5	58	29	25	112	36	76	3,626	146.9	-	1.0	2.8	43
10 to 15	12.5	10	5	6	21	6	15	3,626	166.4	-	0.2	0.6	9
5 to 10	7.5	8	-	1	9	2	7	3,626	186.0	-	0.1	0.3	5
0 to 5	2.5		-			.	-	3,626	205.6	-			
-5to 0	-2.5	.	-	.	-	-	-	3,626	225.2	-	-	-	-
-10to-5	-7.5		-		-	-	-	3,626	244.8	-			-
-15 to - 10	-12.5	-	-	-	-	-	-	3,626	264.3	-	-	-	-
Total		1,397	1,283	1,336	4,016	1,404	2,612			.	16.2	41.5	648

ROOSEVELT HIGH SCHOOL

LBRARY

Amb. Temp Bin [F]	Ave Temp [${ }^{\text {fr] }}$	01-08 Hours	09-16 Hours	17-24 Hours	Total Bin Hours	Occ. Bin Hours	Unocc. Bin Hours	Outside Air Flowrate [CFM]	OA Air Load [MBTUh]	Electrical Savings [kWh]	Annual Occ. Heating Savings [MMBTU]	Annual Unocc. Heating Savings [MMBTU]	$\begin{array}{\|c\|} \hline \text { Total Heating } \\ \text { Savings } \\ \text { [Therms] } \end{array}$
HEATING													
55 to 60	57.5	60	127	96	283	119	164	1,943	-	.	-	-	
50 to 55	52.5	110	178	125	413	169	244	1,943	5.2		0.2	0.3	6
45 to 50	47.5	108	164	121	393	158	235	1,943	15.7	-	0.5	0.9	16
40 to 45	42.5	240	251	280	771	272	499	1,943	26.2	-	1.4	3.3	53
35 to 40	37.5	355	282	362	999	329	670	1,943	36.7	-	2.4	6.1	96
30 to 35	32.5	239	120	167	526	158	368	1,943	47.2		1.5	4.3	66
25 to 30	27.5	109	76	81	266	88	178	1,943	57.7	-	1.0	2.6	40
20 to 25	22.5	100	51	72	223	67	156	1,943	68.2	-	9	2.7	40
15 to 20	17.5	58	29	25	112	36	76	1,943	78.7	-	0.6	1.5	23
10 to 15	12.5	10	5	6	21	6	15	1,943	89.2		0.1	0.3	5
5 to 10	7.5	8		1	9	2	7	1,943	99.7	-	0.0	0.2	2
0 to 5	2.5	-	-	-	-	.	-	1,943	110.2	-	-	-	-
-5to 0	-2.5	-	-	-	-	-	-	1,943	120.7	-	-	-	-
-10to-5	-7.5	-	-	-	-	-	-	1,943	131.2	-	-	-	-
-15 to -10	-12.5	-	-	-	-			1,943	141.6	-	-	-	-
Total		1,397	1,283	1,336	4,016	1,404	2,612				8.7	22.2	347

Roosevelt UFSD, NY

Exhibit D-5-6-6
ECM 6- Building Management System Upgrades
Demand Control Ventilation
SAVINGS SUMMARY

Building ID	kWh Savings	Thermal Savings	Electric Safety Factor	Thermal Safety Factor
	kWh	Therms	\%	\%
Centennial Avenue Elementary School	.	944	0.0\%	0.0\%
Washington-Rose Elementary School	-	794	0.0\%	0.0\%
Ulysees Byas Elementary School	-	872	0.0\%	0.0\%
Roosevelt Middle School	-	648	0.0\%	0.0\%
Roosevelt High School	-	1,724	0.0\%	0.0\%
subtotal	.	4,981		

Roosevelt UFSD, NY
 Plug Load Cont
 Plug Load Controls - Summary

CALCULATION SUMMARY

	$\begin{aligned} & \text { Centennial } \\ & \text { Avenue } \\ & \text { Elementary } \\ & \text { School } \end{aligned}$	$\begin{aligned} & \text { Washington- } \\ & \text { Rose } \\ & \text { Elementary } \\ & \text { School } \end{aligned}$	Ulysses Byas Elementary Schoo	Roosevelt Middle School	Roosevelt High School
	r	r	r	r	r
	15	25	28	27	32
	2,599	3,070	3,883	3,981	10,438
	0\%	0\%	0\%	0\%	0\%
	2,599	3,070	3,883	3,981	10,438

SAVINGS SUMMARY

Building ID	kWh Savings	Electric Safety Factor
	kWh	
Centennial Avenue Elementary School	2,599	0.0\%
Washington-Rose Elementary School	3,070	0.0\%
Ulysses Byas Elementar School	3,883	0.0\%
Roosevelt Midadle School	3,981	0.0\%
Roosevelt tigh School	10,438	0.0\%
Subtotal	23,972	

Roosevelt UFSD, NY
 Exhibit D-5-6

ECM 6 - Building Management System Upgrades
Plug Load Controls

Equipment	Number of Berts	Total Number of Devices	Typical Use, Weekday On Days	$\begin{array}{\|c} \text { Typical Use, } \\ \text { Weekend On } \\ \text { Days } \end{array}$	$\begin{array}{\|c} \hline \text { On Time } \\ \text { Hours } \\ \text { (Weekdays) } \end{array}$	$\begin{array}{\|c\|} \hline \text { On Time } \\ \text { Hours } \\ \text { (Weekenss) } \end{array}$	$\left\|\begin{array}{c} \text { Parasitic } \\ \text { Load Watts } \end{array}\right\|$	$\begin{gathered} \text { Months/ } \\ \text { Year } \end{gathered}$	$\begin{gathered} \text { Existing } \\ \text { Anual on } \\ \text { Hours } \end{gathered}$	Proposed Annual On Hours	Annual kW Savings
Projettor	2		210				8		8,760	2,310	${ }^{103}$
Medium Printer			210		${ }^{11}$		15	9	8,760	2,310	
Charging Cart	8	8	210		11		37	9	8,760 8,760	2,310	1,909
smartboard			210		11		8	9	8,760	2,310	
AC-110 15 A	-		210		11		8	9	8,760	2,310	
AC-220 20A	-		210		${ }_{11}^{11}$		8		8,760	2,310	
Copier	1	1	210		11		40	9	8,760	2,310	258
H/C Water			210		11				8,760	2,310	
Soda vend			210		11		320	9	8,760	2,310	
Snack Vend			210		11		40	9	8,760	2,310	
Large Coffee			210		11		56	9	8,760	2,310	
TV/Monitor	1	1	210		11			9	8,760	2,310	39
Water Heater			210		11		80	9	8,760	2,310	
SUB TOTAL	15	15									2,599

Equipment	Number of Berts	Total Number of Devices	Typical Use Weekday O Days	$\begin{gathered} \hline \text { Typical Use, } \\ \text { Weekend On } \\ \text { Days } \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { On Time } \\ \text { Hours } \\ \text { (Weekdays) } \end{array} \end{array}$	$\begin{gathered} \text { On Time } \\ \text { Hours } \\ \text { (Weekends) } \end{gathered}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Parasitic } \\ \text { Load Watts } \end{array} \end{array}$	$\begin{gathered} \hline \text { Months / } \\ \text { Year } \end{gathered}$	Existing Anual On Hen Hours	Proposed Annual On Hours	Annual kWh Savings
Projector	19	19	210 210				8 15 15	9	8,760 8760 80	2,310 2310	838
Charsing Cart	5	,	210		11		37	9	8,760 8,760	2,310	${ }_{1}^{1,1,93}$
smartboard			210		11		8	9	8,760	2,310	
AC-110 15 A			210		11		8	9	8,760	2,310	
AC-220 20A			210		11		8	9	8,760	2,310	
Copier			210		11		40	9	8,760	2,310	
H/C Water			210		11		61		8,760	2,310	
Soda Vend	-		210		11		320	9	8,760	2,310	
Snack Vend			210		11		40	9	8,760	2,310	
Large Coffee			210		11		56	9	8,760	2,310	
TV/Monitor			210		11		${ }^{6}$	9	8,760	2,310	
Water Heater		-	210		11		80	9	8,760	2,310	
Book Vend	1	1	210		11		6	9	8,760	2,310	39
SUB TOTAL	25	25									3,070

Roosevelt UFSD, NY

Exhibit D-5-6
ECM 6 - Building Management System Upgrades
Plug Load Controls

Ulysses Byas Elementary School

Equipment	Number of Berts	Total Number of Devices	Typical Use, Weekday On Days	Typical Use, Weekend O Days	$\begin{array}{\|c} \hline \begin{array}{c} \text { On Time } \\ \text { Hours } \\ \text { (Weekdays) } \end{array} \end{array}$	$\begin{gathered} \text { On Time } \\ \text { Hours } \\ \text { (Weekends) } \end{gathered}$	Parasitic Load Watts	$\begin{gathered} \text { Months / } \\ \text { Year } \end{gathered}$	Existing Annual On Hours	Proposed Annual On Hours	Annual kWh Savings
Projector			210						8,760	2,310	
Medium Printer	20	20	210		11		15	9	8,760	2,310	1,935
Charging Cart	6		210		11		37	9	8,760	2,310	
Smartboard			210		11		8	9	8,760	2,310	
AC-110 15 A			210		11		8	9	8,760	2,310	
AC-220 20A	-	-	210		11		8	9	8,760	2,310	
Copier	2	2	210		11		40	9	8,760	2,310	516
H/C Water			210		11		61	9	8,760	2,310	
Soda Vend			210		11		320	9	8,760	2,310	
Snack Vend	-		210		11		40	9	8,760	2,310	
Large Coffee			210		11		56	9	8,760	2,310	
TV/Monitor			210		11		6	9	8,760	2,310	
Water Heater	-		210		11		80	9	8,760	2,310	
SUB TOTAL	28	28									3,883

Equipment	Number of	Total Number of Devices	Typical Use, Weekday On Days	Typical Use, Weekend On Days Days	$\begin{gathered} \text { On Time } \\ \text { Hours } \\ \text { (Weekdays) } \end{gathered}$		Parasitic Load Watts	$\begin{gathered} \text { Months / } \\ \text { Year } \end{gathered}$	$\begin{gathered} \text { Existing } \\ \text { Annual On } \\ \text { Hours } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Annual On } \\ \text { Hours } \end{gathered}$	Annual kWh Savings
Projector	${ }_{15}^{2}$	$\stackrel{2}{15}$	${ }_{210}^{210}$				${ }^{8}$	9	8,760 8780	2,520 2.520 2.	$\begin{array}{r}100 \\ 1,404 \\ \hline\end{array}$
Medium Printer	15	15	210		12	10	15	9	8,760	2,520	1,004 1,847
Charging Cart Smartboard	8	8	210 210		12 12 12	10 10	$\begin{array}{r}37 \\ 8 \\ \hline\end{array}$	9	8,760 8,760	2,520 2.520	1,847
AC-110 15 A			210	-	12	10	8	9	8,760 8,800	2,520	
AC-220 20A		-	210		12	10	8	9	8,760	2,520	
Copier	1	1	210		12	10	40	9	8,760	2,520	250
H/C Water	1	1	210		12	10	61	9	8,760	2,520	381
Soda Vend			210	-	12	10	320	9	8,760	2,520	
Snack Vend			210		12	10	${ }_{5}^{40}$	9	8,760	2,520	
Large Coffee			210		12	10	56	9	8,760	2,520	
TV/Monitor			210		12	10	${ }^{6}$	9	8,760	2,520	
Water Heater		-	210	-	12	10	80	9	8,760	2,520	
SUB TOTAL	27	27									3,981

Roosevelt UFSD, NY

Exhibit D-5-6
Plug Load Contro Management System Upgrades

Roosevelt tigh School

Equipment	Number of Berts	$\begin{gathered} \text { Total Number } \\ \text { of Devices } \end{gathered}$	Typical Use, Weekday On Days	Typical Use, Weekend On Days	$\begin{gathered} \text { On Time } \\ \text { Hours } \\ \text { (Weekdays) } \end{gathered}$	$\begin{array}{\|c} \hline \text { On Time } \\ \text { Hours } \\ \text { (Weekends) } \end{array}$	$\begin{array}{\|c\|} \hline \text { Parasitic } \\ \text { Load Watts } \end{array}$	$\begin{gathered} \hline \text { Months / } \\ \text { Year } \end{gathered}$	Existing Annual On Hours	$\begin{aligned} & \text { Proposed } \\ & \text { Annual On } \end{aligned}$ Hours	Annual kWh Savings
Projector			210							2,730	
Medium Printer	7		210		13		15	9	8,760	2,730	633
Charging Cart	13	13	210		13		37	9	8,760	2,730	2,900
smartboard			210		${ }^{13}$		8		8,760	2,730	
AC-110 15 A			210		13		8	-	8,760	2,730	
AC-220 20A	-		210		13		8		8,760	2,730	
Copier	3	3^{3}	210		13		40	9	8,760	2,730	724
H/C Water			210		${ }^{13}$		61	9	8,760	2,730	1,839
Soda vend	2	${ }^{2}$	210		13		320	9	8,760	2,730	3,859
Snack Vend	2	${ }^{2}$	210		13		40	9	8,760	2,730	482
Large Coffee			210		13		56	9	8,760	2,730	
TV/Monitor			210		13		${ }^{6}$	9	8,760	2,730	
Water Heater	-		210		13		80	9	8,760	2,730	
SUB TOTAL	32	32									10,438

Roosevelt UFsD, NY
 Exhibit $0-5-6$. ECM 6 - Building Management System Upgrades
 Plug Load Controls

Exhibit D-5-6
ECM 6 - Building Management System Upgrades

ECM DESCRRITION

Switch third party natural gas suppliers
DATA/ASSUMPTIONS
Estimated cost of Natural Gas based on baseline rates of Centennial Avenue school National Grid supplier rate.

RECOVERY/SAFETY FACTOR

Thermal safety Factor [\%] = \qquad

CALCULATIONS

	Ulysses Byas Elementary schoo
Third Party Supplier Switch Applicable (Y/N)	r
Existing Supplier	Gateway Energy
Proposed Supplier	National Grid
Adjusted Building Usage [Therms)	40,147
Existing Cost of Natural Gas [s/Therm]	1.29
Estimated Costof Natural Gas [\$/Therm]	1.08
Estimated Cost Difference of Natural Gas [\$/Therm]	0.21
Post Project Natural Gas Cost Savings [s]	\$ 8,332
Safety Factor [\%]	15\%
Savings [s]	7,082

Roosevelt UFSD, N

Exhibit D-5-7
ECM 7 - Building Envelope Improvements

ECM DESCRIPTION

Reduce building infiltration by weather stripping doors, sealing roof \& wall joints, duct \& piping penetrations, skylight perimeters and window corners. Install insulation where applicable
DATA / ASSUMPTIONS
*Crack area determined by survey tean
COMMISSIONING
Visual inspection per scope of work from subcontractor. Inspection might include smoke tes

RECOVERY/SAFETY FACTOR

Safety Factor (Electric) [\%] =
Safety Factor (Thermal) (\%\%) =
formulae
$S_{\text {sanncs }}=\left(\left(1.08 \cdot Q_{\text {ExStinc }} \cdot \Delta T\right)-\left(1.08 \cdot Q_{\text {proposese }} \cdot \Delta T\right)\right) \cdot T$ Tocc/unoc
$Q_{\text {proporssio }}=A_{\text {crackrproposese }} \cdot W D \cdot v\left(C_{\text {STACK }} \cdot \Delta T+C_{\text {WND }} \cdot\left(V_{\text {WINO }}\right)^{2}\right)$
$Q_{\text {EXSSTING }}=A_{\text {crackexexsting }} \cdot W D \cdot v\left(C_{\text {STACK }} \cdot \Delta T+C_{\text {WIND }} \cdot\left(V_{\text {WINO }}\right)^{2}\right)$

Variable	Units	Description
$S_{\text {savncs }}$	${ }^{\text {BTU }}$	Total sensible infitration/exilitraion energy savings
Q Proooseo	cfm	Proposed infiltration/exilitration air flow rate
$\mathrm{a}_{\text {exsting }}$	cfm	Exising infitiration/exilitration air flow rate
$\Delta \mathrm{T}$	${ }^{\circ}$	Temperature difference between interior and exterior (based on bin data)
Tocciunoca	Hours	Occupied/unoccupied bin hours
$\mathrm{v}_{\text {wno }}$	MPH	Average wind speed
${ }^{\text {WWNO }}$	$\mathrm{CFM}^{2} / \mathrm{in}^{4} \cdot \mathrm{MPH}^{2}$	Wind coefficient
wD	\%	Wind diversity factor
$\mathrm{c}_{\text {stack }}$	$\mathrm{CFM}^{2} / \mathrm{in}^{4} .9 \mathrm{~F}$	Stack coefficient
Acrackrpoopse	in 2	Total crack area after retrofit
Acrackexsting	in^{2}	Total crack area before eetrofit

Roosevelt UFSD, NY

Exhibit D-5-7
ECM 7-Building Envelope Improvements
assumptions/Data

Building	Electric Savings $[\mathrm{kWh}]$	Thermal Savings [Therms]	$\underset{\substack{\text { Electic De-Rate } \\[\%]}}{\text { [\% }}$	$\underset{\substack{\text { Thermal De-Rate } \\[\%]}}{ }$
Centennial Avenue Elementary School	1,154	760	0\%	0\%
Washington-Rose Elementary School	1,041	686	0\%	0\%
Ulyses Byas Elementary School	684	451	0\%	0\%
Roosevelt Middle School	1,824	1,202	0\%	\%
Roosevelt tigh School	4,093	2,697	\%	0\%
Totals	8,795	5,796		

SAVINGS SUMMARY

Building ID	kWh Savings	Thermal Savings	Electric Safety Factor	Thermal Safety Factor
	kWh	Therms	\%	\%
Centennial Avenue Elementary School	1,154	760	0.0\%	0.0\%
Washington-Rose Elementary School	1,041	686	0.0\%	0.0\%
Ulysses Byas Elementary School	684	451	0.0\%	0.0\%
Roosevelt Middle School	1,824	1,202	0.0\%	0.0\%
Roosevelt High School	4,093	2,697 5796	0.0\%	0.0\%

Roosevelt UFSD, N

Exhibit D-5-7
ECM 7 - Building Envelope Improvements

Building	Group	Task	Units	Crack	Units	$\begin{array}{\|l\|l\|} \hline \text { LF/ } \\ \text { Unit } \end{array}$	Work Summary	$\begin{array}{\|c} \text { Crack } \\ \text { Length }(\text { LF }) \end{array}$	Leakage Area (SF)	Savings (CFM)	$\begin{aligned} & \text { Total } \\ & \text { Heating } \\ & \text { Savings } \\ & \text { (MMBELu} \end{aligned}$	$\begin{array}{\|c} \hline \text { Total } \\ \text { cooling } \\ \text { Saving } \\ \text { (MMBtu) } \end{array}$	$\begin{array}{\|c} \text { Total } \\ \text { Savings } \\ \text { (MMBtu) } \end{array}$	$\left.\begin{array}{\|c} \hline \text { Total } \\ \text { Heating } \\ \text { Having } \\ \text { (fuel Units) } \end{array}\right)$	$\left.\begin{array}{\|c\|} \hline \text { Total } \\ \text { Cooling } \\ \text { Savings } \\ \text { (Fuel Units) } \end{array} \right\rvert\,$	Heating Fuel Units	Cooling Fuel Units
Centennial Avenue Elementary School	Door Weather Stripping	Install Door Jamb Spacer (UT)	3		3.0		Door - Install Jamb Spacer (Units)									therm	kWh
Centennial Avenue Elementary School	Door Weather Stripping	Double Door - Sides, Sweep, Center (UT)	5	0.125	5.0	27	Door Weather Striping - Doubles (Units)	135.0	1.4	192.9	32.4	1.7	34.0	323.7	491.3	therms	kWh
Centennial Avenue Elementary School	Door Weather Stripping	Double Door- Sweep, Center (UT)	7	0.125	7.0	13	Door Weather Striping - Doubles (Units)	91.0	0.9	130.0	21.8	1.1	23.0	218.2	331.1	therms	kWh
Centennial Avenue Elementary School	Door Weather Stripping	Single Door - Sides, Sweep (UT)	3	0.125	3.0	17	Door Weather Stripping - Singles (Units)	51.0	0.5	72.9	12.2	0.6	9	122.3	185.6	therm	kwh
Centennial Avenue Elementary School	Door Weather Stripping	Single Door - Sides, Top, Sweep (UT)	2	25	2.0	20	Door Weather Stripping - Singles (Units)	40.0	0.4	57.1	9.6	0.5	10.1	95.9	145.	ther	kWh
Roosevelt tigh School	Buck Frame Air Sealing	Block, Seal (LF)	8	0.083	8.0	1	Buck frame Air Seaing (LF)	8.0	0.1	7.6	1.3	0.1	1.3	12.8	19.4	therms	kWh
Roosevelt tigh School	Door Weather Stripping	Double Door- - Sides, Top, Sweep (UT)	1	0.125	1.0	26	Door Weather Striping - Doubles (Units)	26.0	0.3	37.1	6.2	0.3	6	62.3	94.6	therms	kWh
Roosevelt tigh School	Door Weather Stripping	Double Door- Sides, Top, Sweep, Center (UT)	17	0.125	17.0	33	Door Weather Striping - Doubles (Units)	561.0	5.8	801.5	5	7.0	5	345.3	2,041.5	the	kWh
Roosevelt ligh School	Door Weather Stripping	Double Door- Sweep (UT)	16	0.125	16.0	6	Door Weather Striping - Doubles (Units)	96.0	1.0	137.2	3.0	1.2	24.2	230.2	349.3	therm	kWh
Roosevelt ligh School	Door Weather Stripping	Single Door - Sides, Top, Sweep (UT)	11	0.125	11.0	20	Door Weather Stripping - Singles (Units)	220.0	2.3	314.3	52.8	2.7	5.5	527.6	800.6	therms	kWh
Roosevelt tigh School	Door Weather Stripping	Single Door- Sweep (UT)	3	0.125	3.0	3	Door Weather Striping - Singles (Units)	9.0	0.1	12.9	2	0.1	2.3	21.6	32.8	therms	kWh
Roosevelt ligh School	Overhang Air Sealing	Seal (LF)	19	0.083	19.0	1	Overhang Air Sealing (LF)	19.0	0.1	18.1	3.0	0.2	3.2	30.4	46.1	therm	kWh
Roosevelt ligh School	Overhang Air Sealing	Block, Seal (SF)	20	0.125	20.0	0.5	Overhang Air Sealing (SF)	10.0	0.1	14.3	2.4	0.1	2.5	24.0	36.4	therms	kWh
Roosevelt ligh School	Roof-Wall Intersection Air Sealing	Seal (LF)	554	0.042	554.0	1	Roof-Wall Intersection Air Sealing (LF)	554	1.9	263.8	44.3	2.3	46.6	42.8	672.0	herr	kWh
Roosevelt Middle School	Garage Door Weather Stripping	Roll-Up Door Weather Strip - Sides, Top	2	0.125	2.0	30.5	Roll-Up Door Weather Stripping (Units)	61.0	0.6	87.2	14.6	0.8	15.4	146	222.0	therms	kWh
Roosevelt Middle School	Door Weather Stripping	Double Door - Sides, Top, Sweep, Center (UT)	7	0.125	7.0	33	Door Weather Striping - Doubles (Units)	231.0	2.4		55.4	2.9	58.3	553.9	840.6	therms	kWh
Roosevelt Middle School	Door Weather Stripping	Double Door- - Sweep, Center (UT)	3	0.125	. 0	13	Door Weather Striping - Doubles (Units)	39.0	0.4	55.7	9.4	0.5	9.8	93.5	141.9	therms	kWh
Roosevelt Middle School	Door Weather Stripping	Single Door - Sides, Top, Sweep (UT)	5	0.125	5.0	20	Door Weather Stripping - Singles (Units)	100.0	1.0	142.9	24.0	1.2	25.2	239.8	363.9	therms	kwh
Roosevelt Middle School	Door Weather Stripping	Single Door- Sweep (UT)	3	0.125	3.0	3	Door Weather Stripiping - Singles (Units)	9.0	0.1	12.9	2.2	0.1	2.3	21.6	32.8	ther	kWh
Roosevelt Middle School	Overhang Air Sealing	Seal Firestop (LF)	46	0.167	46.0	1	Overhang Air Sealing (LF)	46.0	0.6	87.6	14.7	0.8	15.5	147.1	223.2	therms	kWh
Ulsses Byas Elementary School	Door Weather Stripping	Double Door - Sweep (UT)	1	0.125	1.0	6	Door Weather Striping - Doubles (Units)	6.0	0.1	8.6	1.4	0.1	1.5	14.4	21.8	therm	kWh
Ulysses Bras Elementary School	Door Weather Stripping	Double Door- Sweep, Center (UT)	14	${ }^{0.125}$	14.0	13	Door Weather Striping - Doubles (Units)	182.0	1.9	260.0	43.6	2.3	45.9	436	662.3	ther	kw
Washington-Rose Elementary School	Door Weather Stripping	Double Door- Sides, Sweep, Center (UT)	3	0.125	3.0	27	Door Weather Striping - Doubles (Units)	81.0	0.8	115.7	19.4	1.0	20.4	194.2	294.8	therms	kWh
Washington-Rose Elementary School	Door Weather Stripping	Double Door - Sides, Top, Sweep, Center (UT)	2	0.125	2.0	33	Door Weather Striping - Doubles (Units)	66.0	0.7	94.3	5.8	0.8	16.6	158.3	240.2	therms	kWh
Washington-Rose Elementary School	Door Weather Stripping	Double Door- Sweep (UT)	4	0.125	4.0	6	Door Weather Striping - Doubles (Units)	24.0	0.3	34.3	5.8	0.3	6.1	57.6	87.3	therms	kWh
Washington-Rose Elementary School	Door Weather Stripping	Double Door- Sweep, Center (UT)	4	0.125	4.0	13	Door Weather Striping - Doubles (Units)	52.0	0.5	74.3	12.5	0.6	13.1	124.7	189.2	therms	kWh
Washington-Rose Elementary School	Door Weather Stripping	Single Door - Sides, Top, Sweep (UT)	3	0.125	3.0	20	Door Weather Striping - Singles (Units)	60.0	0.6	85.7	14.4	0.7	15.1	143.9	218.3	therm	kWh
Washington-Rose Elementary School	Door Weather Stripping	Single Door- Sweep (UT)	1	0.125	1.0	3	Door Weather Striping - Singles (Units)	3.0	0.0	4.3	0.7	0.0	0.8	7.2	10.9	herms	kWh
Washington-Rose Elementary School	Door Weather Stripping	Install Door Jamb Spacer (UT)	3		3.0		Door - Install lamb Spacer (Units)									therms	kwh

Roosevelt UFSD, N

Exhibit D-5-8
Piping Insulation - Summary
CALCULATION SUMMARY

	Centennial Avenue Elementary School	Washinton- Rose lementary School	Ulysses Byas Elementary School	Roosevelt Middle School	Roosevelt High School
Heating Hot Water Pipe Insulation Savings [Therms] Safety Factor [\% Total Thermal Savings [Therms]	Y	${ }^{1} 285$	612	$\mathrm{r}_{1,774}$	1.43
	0\% ${ }^{1,817}$	1,285	${ }_{6} 612$	1,774	
	0\% ${ }_{1,817}$	0\% ${ }_{1,285}$		0\% 1.774	

SAVINGS SUMMARY

Building ID	Thermal Savings	Thermal Safety Factor
tennia Avenue Elementary School	1817	0.0\%
Washington-Rose Elementary School	${ }_{1}^{1,285}$	0.0\%
Ulysses Byas Elementary School	612	0.0\%
Roosevelt Middle School	1,774	0.0\%
Roosevelt tigh School	1,439	0.0\%
Subtotal	6,926	

oosevelt ffsD,
 Exhibit D-5-8 ECM 8 - Pipe Insulation
 Heating Hot Water Piping Insulation
 ECM DESCRIPTION

insulate bare heating hot water piping located in boiler rooms and in transition areas. Insulate tank shells where applicable.
DATA / ASSUMPTIONS
Run Hours
New Pipe Insulation Thermal Conductivity (k-Factor) \qquad
COMMISSIONING
Visual inspection per scope of work from subcontractor.
RECOVERY/SAFETY FACTOR
Thermal Safety Factor $[\%]=\square \quad$ Various
formulae

Convection Analysis
aconvins $=h_{\text {C.INS }} \cdot\left(\pi \cdot D_{\text {MSS }} \cdot L_{\text {LPEE }}\right) \cdot\left(T_{\text {TMS }}-T_{\text {AMB }}\right)$

$T_{\text {FIIMM }}=\left(T_{\text {WSS }}+T_{\text {AMB }}\right) / 2$

Herative Insulation Surface Temp Analysis
$q_{\text {ITER }}=\left[\left(T_{\text {BaRE }}-T_{\text {AMB }}\right) \cdot 2 \cdot \pi\right] /\left[\ln \left(D_{\text {NSS }} / D_{\text {gafe }}\right) \cdot(1 / \mathrm{k})+\left(1 /\left(D_{\text {WS }} / 2 \cdot h_{\text {WT }}\right)\right)\right]$
$\mathrm{T}_{\text {INS }}=\mathrm{T}_{\text {BARE }}-\mathrm{q}_{\text {TIER }} \cdot \ln \left(\mathrm{D}_{\text {WS }} / \mathrm{D}_{\text {BARE }}\right) \cdot(1 /(2 \cdot \pi \cdot \mathrm{k}))$
$\left.h_{\text {ITER }}=0.27 \cdot\left(T_{\text {MS }}-T_{\text {AMS }}\right) / D_{\text {MS }}\right)^{0.25}$
Radiation Analysis
$G_{\text {RAD }} \cdot$ NS $=\sigma \cdot \varepsilon_{\text {WSS }} \cdot\left(\pi \cdot D_{\text {WSS }} \cdot L_{\text {LPPE }}\right) \cdot\left(\left(T_{\text {TMS }}+460\right)^{4}-\left(T_{\text {SURR }}+460\right)^{4}\right)$
$\mathrm{q}_{\text {RAOOBARE }}=\sigma \cdot \varepsilon_{\text {BARE }} \cdot\left(\pi \cdot D_{\text {BARE }} \cdot L_{\text {LPPE }}\right) \cdot\left(\left(T_{\text {taRE }}+460\right)^{4}-\left(T_{\text {SURR }}+460\right)^{4}\right)$
$\mathrm{T}_{\text {Sura }}=\left(\mathrm{T}_{\text {floor }}+\mathrm{T}_{\text {celung }}+2 \cdot T_{\text {wall }}\right) / 4$

oosevelt UFSD, NY
 Exhibit D-5-8

ECM 8 - Pipe Insulatio
Heating Hot Water Piping Insulation
CAICULATIONS
*Inputs are in blue

Building	$14^{\prime \prime}+$ Diameter	10" Diameter	${ }^{8}$ " Diameter	6" Diameter	${ }^{5 \times}$ " Diameter	4 4" Diameter	${ }^{3}$ " Diameter	2.5" Diameter	$2{ }^{\text {" Diameter }}$	1.50 Diameter	1" Diameter	0.75" Diameter	0.5" Diameter
Centennial Avenue Elementary School	17.7					96.8	20.0	.					
Washington-Rose Elementary School		-	-	.	35.8	58.0	38.2	.	.	-	-	-	
Ulysses Byas Elementary School	.	.	.		4.0	44.4	10.0	-	.	.	-	-	
Roosevelt Middle School	-	.	.	7.7	65.6	43.8	59.2	
Roosevelt tigh School	-	-	-	23.1		76.4	25.0	28.5	-	-	-	-	
Totals	17.7	.	.	30.8	105.4	319.4	152.4	28.5	-	-	-	-	

	$\begin{aligned} & \hline \text { Centennial } \\ & \text { Avenue } \\ & \text { Elementary } \\ & \text { School } \end{aligned}$	Washington-Rose Elementary Schoo	Ulysses Byas Elementary School	Roosevelt Middle School	Roosevelt tigh school
Total Linear Feet of Insulation [ft] Losses from Bare Pipe [BTU/hr]	134.5	132.0	58.4	176.3	153.0
	48,500	39,642	17,218	54,500	44,576
Losses from Insulated Pipe [BTU/hr] Proposed Boiler Efficiency [\%]	12,756	11,164	4,883	15,185	12,68
	79.0\%	89.0\%	81.0\%	89.0\%	89.0\%
Thermal Savings [Therms/hr] Safety Factor [\%	0.45	0.32	15	0.44	0.36
	0\%	0\%	0\%	0\%	0\%
Thermal Savings [Therms]	1,817	1,28	612	1,774	1,439

Roosevelt UFSD, NY
 Exhibit D-5-8

Heating Hot Water Piping Insulation

Nominal Pipe Siel [in]	14.00	10.00	8.00	6.00	5.00	4.00	3.00	2.50	2.00	1.50	1.00	0.75	0.50
	180	180	180	180	180	180	180	180	180	180	180	180	188
Thickness of t nsulation [in]	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	0.270	0.270	0.270	0.270	0.270	0.270	0.270	0.270	0.270	0.270	0.270	0.270	0.270
Pipe lengt \mid lti)	1	1	1	1	1	1	1	1	1	1	1	1	1
Hours of peeation [$[$ hr	4,016	4,016	4,016	4,016	4,016	4.016	4,016	4,016	4,016	4,016	4,016	4,016	4,016
Environment Temp $[9]$	70	70	70	70	70	70	70	70	70	70	70	70	70
Contact Temp of floor [F]	60	60	60	60	60	60	60	6^{6}	60	60	60	60	60
Contact Temp of ceiling ${ }^{\text {P }}$ ¢	90	90	90	90	90	90	90	90	90	90	90	90	90
Contact emp of Wals ${ }^{\circ} \mathrm{F} /{ }^{\text {a }}$	75	75	75	75	75	75	75	75	75	75	75	75	75
Intial Insulation fim Coefficent Estimate [BTU/hrititer)	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65
Emisisivit of fare Pipe	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Emisisity of f nsulated Pipe	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Outisid Diamete of fare Pipe in	14.000	10.750	8.625	6.625	5.563	4.500	${ }^{3.500}$	2.875	2.375	1.900	1.315	1.050	0.840
Outiside Diameere of Insulated Pipe [in]	16.000	12.750	10.225	8.625	7.563	6.500	5.500	4.875	4.375	3.900	${ }^{3.315}$	3.050	2.840
Characterisicic lengt of fare Pipe (tt)	1.167	0.996	0.719	0.552	0.464	0.375	0.292	0.240	0.198	0.158	0.110	0.088	0.070
Characeisisici lengt of fl susuled P Pipe [ft)	${ }^{1.333}$	1.063	0.885	0.719	0.630	0.542	0.458	0.406	0.365	0.325	0.276	0.254	0.237
Averge film Temp. of fare Pipe [f]	125.0	125.0	125.0	125.0	125.0	125.0	125.0	125.0	125.0	125.0	125.0	125.0	125.0
Average film Temp. of nsuluted Pipe ${ }^{\text {cff }}$	114	113	113	112	111	111	110	109	109	108	106	105	104
	0.841	0.899	0.950	1.014	1.060	1.117	1.190	1.250	1.311	1.386	1.520	1.608	1.700
Film Coefficient of Insulated Pipe [BTU/rctit Pr\|	0.65	0.68	0.71	0.75	0.77	0.80	0.83	${ }^{0.85}$	0.87	0.89	0.91	0.93	0.94
Convective Losses for Bae P Pipe [BTU/r.ryt	339.21	278.24	235.97	193.61	169.83	144.86	119.98	103.52	89.70	75.88	57.58	48.63	44.14
	${ }^{14.98}$	125.19	108.83	92.67	83.72	74.44	${ }_{65.34}$	59.43	54.56	49.78	${ }^{43.64}$	40.74	38.36
Radiant Lossesof fare Pipe [BTU/rctit)	485	372	299	230	193	156	121	100	82	66	46	36	29
Radiant Losese of frsulated Pipe [PTU/Mr+ti]	25	20	17	14	12	10	,	8	7	6	5	5	
Total Losese of fare Pipe egru/hreti)	824	651	535	${ }_{4} 23$	363	301	${ }^{241}$	${ }^{203}$	172	142	103	85	70
Total Losses of finsulate Pipe [BTU/rift)	174	145	126	106	96	${ }_{8}$	74	67	61	56	49	46	${ }^{43}$

SULATION SURFACE TEMP. CALCU		Ist teration Heat Loss [iTV/hr]	492
14.0 inch ${ }_{\text {pue }}$		1 stiteration Insulation Surace Temp. [f]	141
			0.730
			271
ves Sipe	14.00	2nd teration Insulation Surface Tem. [${ }^{\text {P/F] }}$	159
Bare Pipe Suracee Temp. [f]	180		0.771
	1.65		283
Insulatio Thickness [in]	1.0	3 3rd leration Insulation Surface Temp. [f]	158
	0.270		0.769
Enviroment Temp. [f]	70	ath teration Heat Loss [BTU/hr]	283
Exteral Pipe Diameter [in]	14.00	Atht teration Insulation Surface Temp. [f]	158
Insulation Surface Tem			

INSULATION SURFACE TEMP. CALCULATION		Ist teration Heat toss [BT//nr]	140
2.5 inch pipe		Heration Issulation Surface Temp. [ffl	136
		ion film coefficient [iTu/	0.966
		on Heat Loss [BTU/hr]	${ }^{98}$
NSS Pipe Size [in]	2.50	$2{ }^{\text {nd deration Insulation Surface Temp. [fF] }}$	150
Bare Pipe Surace Temp. (0)	180	2nd teration film coefficient BiTu	1.010
	1.65	3 cr deation Heat Loss [8TV/hr]	101
Insulation Thickness [in]	1.0	3rd leration Insulation Sufrace Temp. $\mathrm{cf}^{\text {f/] }}$	149
Insulation k FFatator [fru/n/riteref]	0.270		007
Environment Temp. $\mathrm{C}^{\text {c] }}$	70	4th leation Heat oss [[BT/hr]	101
Externa Pipe Diameter [in]	2.875	Ath teration Insulation Suface Tem. $\mathrm{c}^{\text {cf] }}$	149
Insulation Surface Temp [F]	149		1.07

Roosevelt UFSD, $N \mathbf{N Y}$
Exhibit $0-5-8$
Exhibit D-5-8
ECM 8 - Pipe
有

INSULATION SURFACE TEMP. CALCULATION 2.0 inch pipe		1 Ist teration Heat tos [itru/rr]	124
		1 stt teration Insulation Surace	135
		sst teration Film coefficient [BT//r.ftis	0.988
Nes Pipe Size [in]		nd deration Heat Loss [PTV/hr]	88
	2.00	2nd leration Insulation Surface Temp. [f]	148
Bare Pipe Surface Temp. [$\left.{ }^{\circ} \mathrm{F}\right]$ Initial Film Coefficient [BTU/hr. $\cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}$]	180		1.033
	1.65	3 3rd letation Heat Loss [Br//hr]	91
Insulation Thickness [in]	1.0	3 rcd teation Insulation Surface Temp	147
	0.270		1.030
Enviroment Temp. [F]	70	ath teration Heat Loss [Br/h/r]	91
External Pipe Diameter [in] Insulation Surface Temp [${ }^{\circ}$ F]	${ }^{2.37}$	Ath Heeration Insulation Surface Temp.	147
	147		1.030
INSULATION SURFACE TEMP. CALCULATION 1.5 inch pipe			
		Ist teration Heat Loss [ETU//n]	
		St teration Insulation Surface Temp.	134
			1.012
		2nd leation Heat Loss [BT/U/	79
Nos Sipe Size [in]	1.50	2nd leration Insulation Surface Temp. $\mathrm{PFF}^{\text {P/ }}$	146
Bare Pipe Surface Temp. [$¢$ ¢]	180		1.058
	1.65	3 3rd leration Heat Loss [BTV/hr]	82
Insulation Thickness [in]	1.0	3 3rd teation Insulation Surface Temp. [f]	145
	0.270		1.054
Enviroment Temp. [F]	70	ath teration Heat Loss [Br/h/r]	81
External Pipe Diameter [in] Insulation Surface Temp [${ }^{\circ} \mathrm{F}$]	1.9	Ath Heration Insulation Surface Temp. [f]	146
	146	ath teration Film Coefificien [Bru/hrit	1.054
INSULATION SURFACE TEMP. CALCULATION 1.0 inch pipe			
		St Heation nosulasion Sutree	
		erion	
		2nd teration Heat toss [Bru/ /hr]	${ }_{1}^{1.044}$
Nes Sipe Size [in]	1.00	2nd teration Insulation Surace Temp. $\mathrm{cF}^{\text {c/f }}$	144
Bare Pipe Surface Temp. [$¢$ ¢	180		. 091
Initial Film Coefficient [BTU/hr•ft ${ }^{2} \cdot{ }^{\circ} \mathrm{F}$] Insulation Thickness [in]	1.65	3 3rditeration Heat Loss [Br//hr]	69
	1.0	3rd leation Insulation Surface Temp. [f]	143
	0.270		1.087
Enviromenent Temp. [f]	70	Ath teration Heat Loss [Bru/hr]	69
External Pipe Diameter [in] Insulation Surface Temp [${ }^{\circ} \mathrm{F}$]	1.315	Ath Heration Insulation Surface Temp. [F]	143
	143		1.087

Exhibit D-5-8

Exhibit $0-5-8$
ECM 8 - Pipe Insul

INSULATION SURFACE TEMP. CALCCLATION		1 Istteration Heat Loss [iTV/hr]	79
		Iteration Insulatio Surace Ten	130
			1.05
NSS Pipe Size [in]		2 2nd leration Heat Los [PTV/hr]	61
	0.75	$2{ }^{2 n d}$ deration Insulation Surface Temp. [f]	142
Bare Pipe Surface Temp. [$\left.{ }^{\circ} \mathrm{F}\right]$ Initial Film Coefficient [BTU/ $\mathrm{hr} \cdot \mathrm{ft}{ }^{2} \cdot{ }^{\circ} \mathrm{F}$]	180		1.107
	1.65	3 sc deration Heat Loss [itu/hr]	63
Insulation Thickness [in]	1.0	rrat teation Insulation Surface Tem. C°	${ }^{141}$
Insulation k Factor [[BT/ $/ \mathrm{rc} \cdot \mathrm{t}^{2}$. $/$]	0.270		1.103
Enviroment Temp. [f]	70	4th teration Heat Loss [BT/ /h]	62
External Pipe Diameter [in] Insulation Surface Temp [${ }^{\circ} \mathrm{F}$]	1.05	Ath teration Insulation Surace Temp. [t	${ }^{141}$
	141		103
INSULATION SURFACE TEMP. CALCULATION		1 Ist teration Heat Loss [BT//hr] $^{\text {a }}$	
			128
			1.070
		2nd deration Heat Loss [BTU/hr]	56
Nes Sipe Size [in]	0.50	$22^{\text {a d teration Insulation Surface } \mathrm{Temp.} \text {. }}$ [f]	140
Bare Pipe Surrace Temp. [f]	180		1.120
Initial Film Coefficient [BTU/ $\mathrm{hr} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}$] Insulation Thickness [in]	1.65	3 c d leation Heat Loss [iT//hr]	57
	1.0		139
	0.270		. 115
Enviroment Temp. [f]		4th teation Heat Loss [iTV/hr]	57
External Pipe Diameter [in] Insulation Surface Temp [${ }^{\circ}$ F]	0.84	Ath teration Insulation Surface Temp. Pfil	139
	139		1.115

Roosevelt UFSD, N
 ECM 9 - Install Walk-In Freezer/Coolers Controllers

ECM DESCRIPTION
Install refigigeration controllers (or equivalent) on walk-in freezers and coolers. This will reduce compressor cyccing and improve operating efficiency.
DATA / ASSUMPTIONS
Ant-sweat door heaters and existing evaporator fan motors run continuously
COMMISSIONING

EcCovery/SAfETY facto
Electric Safety Factor $[\%]=$
formulae
Existing Compressor Energy Use
$\mathrm{C}_{\mathrm{E}}=\mathrm{C}_{\text {KNTT }} \cdot\left[\left(\mathrm{C}_{\text {DC.W }} \cdot\right.\right.$ Bin $\left._{\text {Eon }}\right)+\left(C_{\text {DC.S. }} \cdot\right.$ Bin $\left.\left._{\text {Eoon-off }}\right)\right]$

Compressor Savings

chir
ECM Motor Savings

Door Heater Savings

$\mathrm{DH}_{\text {savingscoleer }}=\left(\mathrm{kW}_{\text {OH }} \cdot 8760\right)-\left(\mathrm{kW}_{\text {OH }} \cdot \mathrm{H}_{\text {OH }} \cdot L_{\text {Poweretevel }}\right)$
$D H_{\text {suvingsfereere }}=\left(\mathrm{kW}_{\text {OH }} \cdot 8760\right)-\left(40 \% \cdot \mathrm{~kW}_{\text {OH }} \cdot 4000+\mathrm{kW}_{\text {DH }} \cdot 4760 \cdot \mathrm{~L}_{\text {Poweetevel }}\right)$

Roosevelt UESD, NY

Exhibit D-5-9
ECM 9 - Install Walk-In Freezer/Coolers Controllers

riable	Units	Description
C_{E}	kWh/r	Compressor energy usage per year
$\mathrm{C}_{\text {KWT }}$	kw	Total compressor load affected by economisers
$\mathrm{Coc}_{\text {c.w }}$	\%	Compressor duty cycle - winter months
$\mathrm{Bin}_{\text {Econ }}$	Hours	Bin Hours - Economiser
$\mathrm{Cocss}^{\text {cos }}$	\%	Compressor duty cycle - non winter months
$\mathrm{Bi}_{\text {Eoomofor }}$	Hours	Economiser off hours per year
Evapfan ${ }_{\text {sumens }}$	kwh/rr	Cycling evaporator fan net energy savings per year
EvapFancrobe	kWh/rr	Cycling evaporator fan energy savings per year
$\mathrm{H}_{\text {opeating }}$	Hours	Operating Hours
Looal	-	Total load of installed fans
c_{5}	kWh/rr	Compressor energy savngs per year
toontolererun\%	\%	Controller reduction in run time
Evapfansomesa	//r	Evaporator savings per year
$\mathrm{kW}_{\text {Evap }}$	kw	Total k W of all evaporator fans
$\mathrm{H}_{\text {evopoff }}$	Hours	Evaporator fan off time
$\mathrm{w}_{\text {Motorsavins }}$	kWh/ yr	Electrical Savings for Motor Replacement
$\mathrm{H}_{\text {coolrol }}$	Hours	Evaporator Fan On Time
Leeuction	\%	Reduction in motor load
$\mathrm{W}_{\text {Redutedectoolingle }}$	$\mathrm{k}^{\mathrm{kWh} / \mathrm{yr}}$	Electrical Savings for Motor Replacement
$\mathrm{DH}_{\text {savingsooler }}$	kWh/yr	Cooler door heater savings
$\mathrm{kW}_{\text {он }}$	kw	Door Heater kW
$\mathrm{H}_{\text {¢ }}$	Hours	Door heater run hours
Lowereterel	\%	Power level of door heaters

Roosevelt UEsD, NY

Exhibit D-5-9
ECM 9 - Install Walk-In Freezer/Coolers Controllers

CALCULATIONS

crcling evaporator fans

Include Cycling Evap. Fans	r	r	r	r	r	r	r	r	r	r	r	r
Existing Evap. Fan Motor Load [kW]	0.1139	0.1518	0.2530	0.2530	0.25	0.25	0.25	0.25	0.11	0.25	0.11	0.11
Existing Evap. Fan Run Time [hr]	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760		
Average Compressor Run Time [\%]	48\%	48\%	48\%	48\%	48\%	48\%	48\%	48\%	48\%	48\%	48\%	48\%
Proposed Annual Compressor Run Time [hrr]	4,178	4,178	4,178	4,178	${ }^{4,178}$	4,178	4,178	4,178	4,178	${ }^{4,178}$	4,178	4,178
Proposed Evap. Fan off Time [hr]	3,914	3,914	3,914	3,914	3,914	3,914	3,914	3,914	3,914	3,914	3,914	
Savings from Evap. Fan Cycing [kWh]	446	594	990	990	990	990	990	990	446	990	446	446
Savings from Reduced Evap. Fan Cooling Load [kWh]	203	270	451	451	451	451	451	451	203	451	203	203
Total Savings from Cycling Evap. Fans [kWh]	648	864	1,441	1,441	1,441	1,441	1,441	1,441	648	1,441	648	

Direct Digital Termperature Controls
Comp. and Cond. Fan Annual Energy Consumptionwu
\qquad ${ }^{7,6}$

14,054	8,283	14,054	7,644	14,054	

\square
ECM EVAPORATOR FAN MOTORS

Include ECM Evap. Fan Motors Existing Evap. Fan Motor Load [kW]	N	N	0.25	${ }^{\mathrm{r}} 0.25$	0.25				${ }^{\mathrm{Y}} 0.11$	0.25		0.11
Reduction in Evap. Fan Motor Load with ECM Motors [\%]	65\%	65\%	65\%	65\%	65\%	65\%	65\%	65\%	5\%	65\%	\%	65\%
Proposed Evap. Fan Run Time [hr]	4,730	4,730	4,730	4,730	4,730	4,730	4,730	4,730	4,730	4,730	4,730	4,730
Evap. Fan Motor Load Saving [kW$]$			0.16	0.16	0.16	0.16	0.16	0.16	0.07	0.16	0.07	析
Fan Motor Consumption Savings [kWh$]$			778	778	778	778	778	778	350	778	350	
Reduced Cooling Load from Evap. Fans [kWh]				$\begin{array}{r}354 \\ 1,132 \\ \hline\end{array}$	354 1322 132	354 1132 1	354 1,132 1	${ }^{354}$	159 509	354 1132 1	$\begin{array}{r}159 \\ 509 \\ \hline\end{array}$	159 500
Total Savings from ECM Evap. Fan Motors [kWh]			1,132						509		509	509

Roosevelt UEsD, N

Exhibit D-5-9
ECM 9 - Install Walk-In Freezer/Coolers Controllers
Controlling Electric Defrost

DOOR HEATER CONTROLS

Include Door Heater Controls	N	r	r	r	${ }^{\text {r }}$	$\stackrel{r}{ }$	r	r	r	r	r	r
Equipment Type	Cooler	reezer	Coole	reezer	Cooler	Freezer	Cooler	rezer	cooler	rez	cooler	Freezer
Existing Door Heater Load [kW]		0.27	0.27	0.27	0.27	0.27	0.27	0.27		0.27		
Existing Door Heater Annual Energy Consumption [kWh]		2,355	2,355	2,355	2,355	2,355	2,355	2,355		2,355		
Estimated Run Hours with Controls [hrs]	3,760	3,760	3,760	3,760	3,760	3,760	3,760	3,760	3,760	3,760	3,760	8,760
Estimated Avg. Door Heater Power Level with Controls [\%]	65\%	65\%	60\%	65\%	65\%	65\%	65\%	5\%	65\%	65\%	65\%	65\%
		1,262	606 1778	1,262 1	${ }^{657}$	1,262 1	657 1.698	1,262 1,093		$\xrightarrow{1,262}$		
Total Savings from Door Heater Controls kWW)		1,093	1,748	1,093	1,698	1,093	1,698					

CALCULATION SUMMARY
Total Savings with Evap. Fan Controls [kWh)
Total Saving from ECM Evap. Fan Motors $[\mathrm{kWh}]$
 Total SSvings from Direct Digital Controls $[k W h]$
Total Savings from Defrost Control
$[k W h)$

$$
\begin{aligned}
& \text { Electric Safety Factor (ovic| } \\
& \text { Total Savings }[k W h)
\end{aligned}
$$

\square

${ }^{41}$	543	${ }^{443}$	764	475	
		1,132	1,132	1,132	
648	864	1,441	1,441	1,441	
	543	382	703	414	
	794		794		
	1,093	1,778	1,093	1,698	
	1	1	\%		
1,477	23\% ${ }_{\text {2,938 }}$	11\% ${ }_{4,601}$	9\% ${ }_{5,380}$	10\%	9\%
	2,938	4,601	5,380	4,62	

764	4,
1,132	1,132
1,441	1,441
703	382
794	
1,093	1,698
	1
\%	10\%
5,391	4,575

764
1,132
1,441
773
794
1,093
1%
9%
5,405
0.24

${ }^{410}$	604	
509	1,132	
648 382	1,441	
382	$5{ }_{597}^{598}$	
	1,093	
1		
0\%	34\%	
1,950 0.11	3,820 0.24	

57%
1,502
0.11

Roosevelt UFSD, N

Exhibit D-5-9
ECM 9 - Install Walk-In Freezer/Coolers Controllers

SAVINGS SUMMARY

Building ID	kWh Savings	kW Savings
	kWh	kw
Centennial Avenue Elementary School	4,415	
Washington-Rose Elementary School	9,981	0.48
Ulysses Byas Elementary School	10,017	0.48
Roosevelt Middle School	9,980	0.48
Roosevelt High School	9,170	0.56
Subtotal	43,564	

Roosevelt UFSD, N

ECM 10 - Install Solar PV System

ECM DESCRIPTION

Install solar photovoltai systems to generate clean, renewable energy,
DATA / ASSUMPTIONS

Demand Diversity Factor $[\%]=$	

*Savings modeled using Helioscope sottware

COMmISSIONING

Test installed System - measuring the output and verify with calculations for weather conditions. Verify all electrical connections and tie-ins to the grid and the building power.

RECOVERY/SAFETY FACTOR

Electric Safety Factor $[\%]=$ \qquad
formulae
$\mathrm{W}_{\mathrm{PV}}=\sum_{\mathrm{Ian}}^{\mathrm{DaC}}\left[\mathrm{P}_{\mathrm{Pc}} \cdot G_{\mathrm{AC}}\right]$

Variale	Units	Description
w_{pv}	kwh	Total electrical $A C$ energy produced by PV System
$\Sigma^{\text {Dec }}$ gan	-	Summation of months
Poc	kw	DC power rating of proposed PV system
DR	\%	AC to DC conversion de-rate factor (entered into NREL PVWatts software)
A\%	\%	Efficiency gain with axis tracking system (entered into NREL PVWatts software)
$\mathrm{G}_{\text {ac }}$	kwh	AC energy generated per KW of PV system (output of NELL PVWatts software)

Building	$\underset{\substack{\text { DC Rating of System } \\ \text { [kW] }}}{ }$
Centennial Avenue Elementary School	442.7
Washington-Rose Elementary School	179.5
Ulyses Byas Elementary School	5
Roosevelt Middle School	1,557
Roosevelt tigh School	905.3
Totals	3,295.6

Include System [$[/ / \mathrm{N}$]	System Type
r	Roof Mount \& Car Port
r	Roof Mount
r	Roof Mount
r	Roof Mount \& Car Port
r	Roof Mount \& Car Port

Roosevelt UFSD, NY

Exhibit D-5-10
ECM 10 - Install Solar PV System
calculations

	Centennial Avenue Elementary School	Washington-Rose Elementary School	Ulysses Byas Elementary School	Roosevelt Middle School	$\begin{aligned} & \text { Roosevelt High } \\ & \text { School } \end{aligned}$
Rating of System [kw]		179.5	210.5	1,557.6	905.3
Include System [Y/N]		\checkmark			
al kWh AC per y yar Generated [kWh]	590,18	244,865	281,135	2,002,011	1,240,2
Electric Safety Factor [\%]	0\%	0\%	\%	0\%	0\%
Baseline Electric Consumption [kWh]	1,051,200	1,139,200	861,920	2,495,040	2,037,280
Svings from Non-Solar PV ECMs [kWh]	200,787	249,103	157,495	377,353	407,137
Adjusted Baseline Consumption [kWh]	850,413	890,097	704,425	2,117,687	1.630,143
Excess Solar PV Production [[V/N]	N	N	N	N	N
Site Remaining Electric Costa ater EPC [$[$ S	101,411	154,381	112,063	118,828	\$ 155,653
Electric Consumption Saving $[\mathrm{kWh}]$	590,184	244,865	281,135	2,002,011	, 240,21

Uing Certeria Auncetemetarscho

Building Washington-Rose Elementary School

Roosevelt UFSD，NY

Exhibit D－5－10
ECM 10 －Install Solar PV System
Building Ulysses Byas Elementary School

Month	Solar PV System Production [kWh]	Days per Month	Solar Radiation
January	14，317	${ }^{31}$	78.6
February	17，565	28	94.1
March	26，276	31	145.1
Aprii	27，581	30	158.7
Mav	30，296	31	17.9
June	31，727	30	186.4
Julv	33，125	31	194.5
August	29，576	31	173.2
September	23，989	30	137.5
October	20，082	31	111.8
November	14，398	30	79.6
December	12，202	31	68.1

Building Roosevelt Middle Schoor

Port		
Wh］	Days per Month	Solar Radiation ［kWh／m ${ }^{2}$ ］
158	${ }^{31}$	68.8
202	${ }^{28}$	85.4
	31	136.3
	30	153.8
退， 882	31	174.5
7，485	30	185.0
仿，213	31	192.2
位，156	31	168.6
	30	130.9
5，930	${ }^{31}$	102.8
3，945	30	70.8 50.8
7，894	31	58.9

Building Roosevelt High School Type：Roof Mount \＆Car Port			
Month	Solar PV System Production［kWh］	Days per Month	Solar Radiation $\left[\mathrm{kWh} / \mathrm{m}^{2}\right]$
January	61，103		76.1
February	75，580	28	92.0
March	115，833	${ }^{31}$	142.9
April	123，768	30	157.7
May	136，262	31	177.4
June	142，597	30	186.2
Julv	148，205	31	194.1
August	131，226	31	172.0
September	105，222	30	136.0
October	86，598	31	109.5
November	61，609	30	77.4
December	52，211	31	65.7

Roosevelt UFSD, NY

Exhibit D-5-10
ECM 10- Install Solar PV System
SAVINGS SUMMARY

Building ID	kWh Savings	kW Savings	Electric Safety Factor
	kWh	kw	\%
Centennial Avenue Elementary School	590,184		0.0\%
Washington-Rose Elementary School	244,865		0.0\%
Ulysses Byas Elementary School	281,135		0.0\%
Roosevelt Middle School	2,002,011		0.0\%
Roosevelt tigh School	1,240,214		0.0\%
Subtotal	4,358,407		

Roosevelt UFSD, NY

Exhibit D-5-10
ECM 10 - Install Solar PV System
Solar PV Balance
Instal solar photovoltai systems to generate clean, renewable energy.
calculations

DEMAND kW				Roosevelt MiddleSchool	Roosevelt HighSchool	TOTAL
Month	Centennial Avenue Elementary School	Washington-Rose Elementary School	Ulysses Byas Elementary			
Julv		423.0	254.1	604.6	545.3	2,240.9
August	366.4	391.2	248.8	637.0	546.9	2,190.3
September	304.3	160.3	178.2	335.2	371.2	1,399.2
October	180.8	173.4	177.0	322.7	371.2	1,225.1
November	195.4	150.4	183.4	320.8	390.1	1,240.1
December	193.6	174.9	175.2	335.7	378.2	1,257.6
January	189.9	178.9	176.5	341.9	562.7	1,499.9
February	190.1	170.1	209.1	338.4	534.6	1,442,3
March	321.1	371.2	208.5	460.5	534.6	1,895.9
April	343.0	281.9	335.8	597.6	585.8	2,144.1
May	337.0	290.6	356.6	576.0	560.6	2,120.8
June	326.9	295.7	252.6	562.4	565.1	2,002.7
Baseline kW	3,362.4	3,061.6	2,755.8	5,432.8	5,946.3	20,558.9
Non-Solar ECM kW Savings	$\begin{array}{r}577.3 \\ \hline\end{array}$	${ }^{461.7}$	$\begin{array}{r}634.5 \\ \hline 1.12 \\ \hline 15 .\end{array}$	${ }^{1,006.9}$	1,132.7	3,813.2
Adj. Baseline kW	2,785.1	2,599.9	2,121.3	4,425.9	4,813.6	16,745.7
Lowest Monthly Baseline kW	180.8	150.4	175.2	320.8	371.2	1,225.1
Proposed Monthll Lighting kV	7.6	8.9	4.6	10.5	10.2	41.9
Monthly Solar P P Savings kV Monthy Balance Post Solar PV kW	180.8		175.2	320.8		1,198.4
Demand Balance Satisfied	r	r	Y	r	1.2	y 1,18.4
Annual Solar PV S Saving sW						

Roosevelt UFSD, NY

Exhibit D-5-10
ECM 10 - Install Solar PV System
Solar PV Balance

CONSUMPTION kWh				Roosevelt MiddleSchool	Roosevelt tighSchool	total
Month	Centennial Avenue Elementary School	Washington-Rose Elementary School	Ulysses Byas Elementary School			
Julv	120,480	132,160	76,640	286,880	217,600	833,760
August	101,920	129,440	63,040	252,000	162,560	708,960
September	73,760	57,440	48,960	145,440	155,360	480,960
October	73,920	95,840	67,200	168,480	166,400	571,840
November	73,760	48,320	63,840	154,400	148,160	488,480
December	71,840	83,360	67,040	184,960	168,640	575,840
January	79,040	63,360	70,560	170,240	132,480	515,680
February	72,800	70,080	64,800	178,880	159,200	545,760
March	67,200	46,720	72,320	176,000	139,840	502,080
April	89,120	124,960	94,400	244,000	188,480	736,960
May	120,000	143,840	96,480	267,360	208,800	836,480
June	107,360	143,680	76,640	266,400	193,760	787,840
Baseline KWh	1,051,200	1,139,200	861,920	2,495,040	2,037,280	7,584,640
Non-Solar ECM KWh Savings	200,787	249,103	157,495	377,353	407,137	1,391,876
Adj. Baseline kWh Solar PV Savins kWh	880,413 590,184		704,425 281135	$2,117,687$ $2,020,011$	1, 1,30,143	6,192,764 1,35807
Solar PV Saving swh	590,184	244,865	281,135	2,002,011	1, 1,20,214	4,358,407

EXHIBIT D-6
 OPERATIONAL COST AVOIDANCE CALCULATIONS

OSD \#1: LIGHTING O\&M OPERATIONAL COST AVOIDANCE

1. Description and Causal Connection to Scope of Work: Attachment A, section A1 describes Honeywell's specification for implementing a comprehensive lighting retrofit.
2. Operational Cost Baseline: Lighting related O\&M expenditures fall under Operations and Maintenance. The baseline is assumed and calculated to be the Mean Time Between Failures of the existing luminaries.
3. Operational Cost Conservation Methodology: The new lamps and ballasts being installed have longer material life than the standard lamps and ballasts being replaced. This translates into a longer Mean Time Between Failures (MTBF). In other words, funds will be needed to be spent on material to replace failed lamps and ballasts less often.
4. Determination of Operational Costs Avoided: Operational costs were calculated based on the quantity of lamps and ballasts being replaced based on the mean lives of the existing and proposed lamps and ballasts - material savings are agreed to be $\$ 20,057 / \mathrm{yr}$.

OSD \#2: BOILER PLANT UPGRADES OPERATIONAL COST AVOIDANCE

1. Description and Causal Connection to Scope of Work: Attachment A, ECM 2 describes Honeywell's scope of work for installing new condensing hot water boilers at Roosevelt HS, Roosevelt MS, and Washington-Rose ES.
2. Determination of Operational Costs Avoided: Operational cost avoidance is based on the elimination of repairs and the reduction in preventive maintenance resulting from the installation of these new boilers. The amount of savings is agreed to be $\$ 5,000 / \mathrm{yr}$.

OSD \#3: MECHANICAL UPGRADES OPERATIONAL COST AVOIDANCE

1. Description and Connection to Scope of Work: Attachment A, ECM 4 describes Honeywell's scope of work for installing new chiller compressors at Roosevelt MS and new RTU compressors at Ulysses Byas ES.
2. Determination of Operational Costs Avoided: Operational cost savings are a result of a reduction in the District's current repair dollar spend on these existing pieces of equipment. The amount of savings is agreed to be $\$ 5,000 / \mathrm{yr}$.

OSD \#4: BUILDING MANAGEMENT SYSTEM UPGRADE OPERATIONAL COST AVOIDANCE

1. Description and Causal Connection to Scope of Work: Attachment A, ECM 6 describes Honeywell's specification for implementing a comprehensive building management system retrofit.
2. Determination of Operational Costs Avoided: Operational cost savings are based on the significant reduction in the annual repair dollar spend on their existing District-wide building automation system (actuators, valves, sensors, controllers, etc.), on the elimination of JACE license upgrades which were necessary every time the District's IT Department performed a District-wide PC JAVA upgrade, and on the reduction of weekday/weekend OT labor due to the lack of remote monitoring capabilities. The amount of savings is agreed to be $\$ 33,086 / \mathrm{yr}$.
~ This Page Intentionally Left Blank ~

Roosevelt UFSD

Exhibit D-7

ECM*	ECM	IPMvP Option	Buildings included ininstall scope	ECM Intent	Baseline Conditions\& SignificantStipulated Values	Measurement Sample Size for Characteristics	Potential-o-Save NSTALL PERIOD		Performance period					
							Key Parameters Measured, Measuring Point \& Boundary for Determination of Savings	Post-Install Measurement Responsibility \& Frequency	Annual Measured Variables, Measuring Point		Measurement Responsibility \& Frequency	Measurement Procedure	Annual Performance Monitoring Activites	Annual Mev Activities
1	Lighting Upgrades	A-Electric	$\begin{array}{c\|} \text { Centennial Ave ES, } \\ \text { WWashignot-Rose ES, } \\ \text { Ulysses Byas ES, Rosevelt } \\ \text { MS, Roosevelt HS } \end{array}$	$\begin{aligned} & \text { Wattage reduction by } \\ & \text { upgrading existing lighting } \\ & \text { fixtures to LED lighting } \end{aligned}$	Run hours		Option A - Electric - kW by power meter.	One-time pre \& post kW by power mete	No Annual Measurements	N/A	No Annual Measurements	Option A - Apply post-install values and applicable contract utility rates to engineering calculations to one time.	None	Option A - calculate savings for Year 1. Apply results and applicable contract rates to subsequent performance years.
1	Lighting Upgrades	C- Natural Gas	Centennial Ave ES, Wastingoto-Rosese ES, Ulysses Byas ES, Rosevelt MS, Roosevelt HS	Reduce power draw due to higher fixture efficiency	Run hours	80% confidence $/ 20 \%$ perision coefficientont of variation	Confim heating penaly against final "as-buils"	Monthly gas utility bill analysis including building based on HDD building based on HDD	No Annual Measurements	$\begin{aligned} & \text { Centennial Ave ES, } \\ & \text { WWashinton-Rose } \\ & \text { ES, ilysses Byas } \\ & \text { ESR Roosevelt MMS, } \\ & \text { Roosevelt HS } \end{aligned}$	Customer to provide utility data monthy for Potion C analysis	Option C - Complete regression analysis of building based on HDD and input ulityilys to generate gas utility savings utility savings	None	
1	Lighting Controls Upgrades (Interior)	A-Electric	Centennial Ave ES, Wastingoto-Rosese ES, Ulysses Byas ES, Rosevelt MS, Roosevelt HS	Reduce runtime of lamp fixtures by ochinaling occupancy sensors	Run hours	80% confidence/ $/ 20 \%$ perisin $/ .50$ coefficienton of varaition	Quantity of sensors installed	Onetime	No Annual Measurements	N/A	No Annual Measurements	Option A - Apply post-install values and applicable contract utility rates to engineering calculations to determine Yr 1 electricity savings one time.	None	Option A- calculate saving for Year 1. APply results and applicabole contract sutes to subsequent performance years.
2	Boiler Plant Upgrades - Boiler Replacement	C- Natural Gas	Washington-Rose ES, Roosevelt MS, Roosevelt HS	$\begin{gathered} \text { Reduce fuel use due to } \\ \text { improved combustion and } \\ \text { thermal efficiency. } \end{gathered}$	Boiler Load, Enviorment weather, \& Scheduling/ps, Thermal Efficiency	100\%	Combustion efficiency	1-Time Post-retrofit combustion efficiency test	$\begin{gathered} \text { Combustion efficiency } \\ \text { measurements annually } \\ \text { by customerv. } \\ \text { Gas use at building } \\ \text { Meters } \end{gathered}$	Centennial Ave ES Washington-Rose ES, Roosevelt MS Roosevelt HS		Option C - Complete regression analysis of building based on HDD and input utility bills to generate gas savings for Option C buildings.	No Annual Monitoring or Site Inspections	Combustion efficiency testing and annual service (including cleaning) of boilers by customer. Obtain maintenance documentation from customer. Option C - complete regression analysis to generate heating annually avings
2	Boiler Plant Upgrades - Gas Supplier Switch	C- Natural Gas	Washington-Rose ES, Roosevelt MS, Ulysses Byas ES	$\begin{gathered} \text { Reduced cost by } \\ \text { switctining natral as } \\ \text { suppiers } \end{gathered}$	N/A	100\%	N/A	Confirm switch of natural gaat suppoer frum Gaieway to to ational Grid	Confirm switch of natural gas supplier from Gateway to National Grid	Washington-Rose ES, Roosevelt MS, Ulysses Byas ES	Customer to provide monthly gas bills for Option C meters	N/A	NA	Confirm switch of natural gas supplier from Gateway to National Grid
2	$\begin{gathered} \text { Boiler Plant } \\ \text { Upgrades - Gas Bill } \\ \text { tax error } \end{gathered}$	C- Natural Gas	Roosevelt HS	removal of state tax from monthly utility bill	N/A	100\%	Specific to gas meter accl\# 9134266004	Confirm removal of tax billing error from Acct\# 9134266004 gas bill	Confirm removal of tax ling error from Acct\# 9134266004 gas bill	Roosevelt HS	Customer to provide gas bill monthly for acct\# 9134266004	N/A	NA	Confirm removal of tax billing error from Acct\# monthly
3	$\substack{\text { Domestic Hot Water } \\ \text { Heating Upgrades }}$	C- Natural Gas	Washington-Rose ES, Roosevelt HS	Reduced fuel use through improved thermal efficiency	Baseline Nameplate Load, Schedule and stipulated in the projected energy savings calculation	100\%	Confirm model\#, storage capacity (gallons) from nameplate data post-install. Confirm hot water supply temperature settings.	pecification data / cut sheets to confirm new efficiencies	$\underset{\substack{\text { Gas Use at building } \\ \text { Meters }}}{\substack{\text {. } \\ \text {. }}}$	Washington-Rose ES, Roosevelt HS	Customer to provide utility data monthly for Option C data monthly for Option C meters	Option C - Complete regression analysis of building based on HDD and input utility bills to generate gas utility savings	No Anuual Monitoring or Site Inspections	$\begin{gathered} \text { option C. complete } \\ \text { regesession analssis } \\ \text { generate eneity savigs ancualy } \\ \text { anvuly } \end{gathered}$
4	Mechanica Upgrades Motor \& V	A - Electric	Centennial Ave ES	Reduce power draw by replacing existing motors with highe efficiency and new VFDs		100\%	Option A - Electric - pre/post kW by power meter for motors. \% speed, HZ, kW, amps, voltage time period	One-time pre/post kW by power meter for motors VF trends for 2 week trending. (see Key Parameters)	No Annual Measurements	N/A	No Anuual Measurements	Option A - Apply post-install values and applicable contract utility rates determine Yr1 electricity savings one time	No Annual Monitoring or Site Inspections	Option A - calculate savings for Year 1, and apply results to subsequent performance years

Roosevelt UFSD

Exhibit D-7

ECM \#	ECM	PPMVP Option	Buildings included ininstall scope	ECM Intent	Baseline Conditions \& Significant Stipulated Values	Measurement Sample Size for Characteristics	Potential-to-save ISTTALL PERIOD		Performance period					
							Key Parameters Measured, Measuring Point \& Boundary for Determination of Savings		Annual Measured Variables, Measuring Point		Measurement Responsibility \& Frequency	Measurement Procedure	Annual Performance Monitoring Activities	Annual Mev Activities
4	$\begin{array}{\|c\|} \text { Mechanical } \\ \text { Upgrades- } \\ \text { Chiller Comperssor } \\ \text { Replacements } \end{array}$	A- Electric	Roosevelt MS	Reduce power draw by replacing existing compressors with new	Baseline run hours, setpoints, weather, nameplate data. Baseline kwh and energy fficiciency ratings (ER) are stipunated as projected in the energy cascuivins calculations	100\%	Option A - Electric - post kW by power meter.	On-time post k ww by power meter	$\begin{gathered} \text { No Annual } \\ \text { Measurements } \end{gathered}$	N/A	No Annual Measurements	Option A - Apply post-install values and applicable contract utility rates to engineering calculations to one time.	No Annual Monitoring or Site Inspections	$\begin{gathered} \text { Option A - calculate } \\ \text { savings for Year 1, and } \\ \text { apply results to } \\ \text { subsequent performance } \\ \text { years } \end{gathered}$
4	$\begin{gathered} \text { Mechanical } \\ \text { Upgrades- } \\ \text { RTU Comperssor } \\ \text { Replacements } \end{gathered}$	A-Electric	Ulysees Byas ES	Reduce power draw by replacing existing compressors with new	Baseline run hours, setpoints, weather, namelatate etata. Baseline kwh and energy efficiency ratitgs (ERR) are stipulated as proejed in the energy savings calculations		Option A - Electric - post kW by power meter.	On-time post k kN by power meeter	No Annual Measurements	N/A	No Annual Measurements	Option A - Apply post-install values and applicable contract utility rates to engineering calculations to one time.	No Annual Monitoring or Site Inspections	$\begin{aligned} & \text { Option A- calculate } \\ & \text { savings for Year } 1, \text { and } \\ & \text { apply results so } \\ & \text { subsequent performance } \\ & \text { years } \end{aligned}$
4	$\begin{gathered} \text { AC Unit } \\ \text { Replacements } \end{gathered}$	A- Electric	Roosevelt Ms, Centennial Ave ES	Reduce cooling lads due improvementiciencs of $A C$ units		100\%	Option A - Electric - post kW by power meter Post kW to be measured at contractually proposed occupied coorg setifs. (EER) Energy Efficiency Rating verified by manufacturer's specifications and nameplate data.	One-time post kW by power meter	No Annual Measurements	N/A	No Annual Measurements	Option A - Apply post-install values and applicable contract utility rates to engineering calculations to determine $\begin{gathered}Y r 1 \\ \text { one tecticicity savings }\end{gathered}$ ne time.	No Annual Monitoring or Site Inspections	Option A- calculate savings for Year 1 and apply results to subsequent performance years
4	Mechanical Uphilled Water replacemements	A- Electric	Centennial Ave ES	Reduce pewer draw by replacing existing motors with NEMA Premium Efficiency motors		100\%	Opfion A - Electric - post kW by power meter.	One-time post kW by power meter	No Annual Measurements	N/A	No Annual Measurements	Option A - Apply post-install values and appicabble contract utitity rates determine Yr 1 electricity savings one time.	No Annual Monitoring or Site Inspections	$\begin{aligned} & \text { Option A - calculate } \\ & \text { savings for Year r } 1 \text { and } \\ & \text { supply results to } \\ & \text { subsequent performance } \\ & \text { years } \end{aligned}$
5	$\begin{gathered} \text { De-Stratification } \\ \text { Fans } \end{gathered}$	A-Electric	$\begin{gathered} \text { Centennial Ave ES, } \\ \text { Washinton-Rose ES, } \\ \text { Ulysses Byas ES, Roosevelt } \\ \text { MS, Roosevelt HS } \end{gathered}$	Electric penaly by adding de-strat fans in gyms	$\begin{gathered}\text { Builing use \& } \\ \text { building population }\end{gathered}$	80% confidence / 20% precision / 0.5 coefficient of variation	Option A - Electric - post kW by power meter.	$\underset{\substack{\text { One-time post } \\ \text { meapurementits to be be to calcs and to } \\ \text { ape } \\ \text { be sued for Yr1 } \\ \text { determination of savings }}}{ }$	None	NA	No Annual Measurements	Option A - Apply contractual rate to engineering calculations to determine Electricity Savings	No Anual Monitoring	Option A - calculate savings for Year 1, and apply results to subsequent performance years
5	$\underset{\substack{\text { De-Stratification } \\ \text { Fans }}}{ }$	C - Natural Gas	Centennial Ave ES, Washinton-Rose ES, Ulysses Byas ES, Roosevelt MS, Rooosevelt HS	Heating savings are estimated usinga reduction in temperature difference across the building envelope above a certain height.	Building use \& buididing population builiding population	100\%	Confirm de-strat fan on / off operation and destrat fan count for each gymnasium	One time post installation verification and photo verification	None	ES, Ulysses Byas ES, Roosevelt MS Roosevelt HS	Customer to provide utility data monthly for Option C meters.	Complete regression analysis of building based on HDD and input utility bills to generate fuel savings for Option C buildings	No Anual Monitoring	Option C- complete regression analysis to generate heating savings annually
6	$\begin{array}{\|c\|} \hline \text { Building } \\ \text { Management } \\ \text { System Upgrades - } \\ \text { Night Setback } \end{array}$	A-Electric	Centennial Ave ES, Wastingion-Rose SS, Ulysses Byas ES, Roosevelt MS, Roosevevett HS	Reduce electric load due to controls upgrades to optimize equipment scheduling and setpoints	Baseline Schedules, Setpoints, Load, and Envionment as stipulated in the proeieted energy savings calculations		Night Setback: confirm contractual required occupied / unoccupied setpoints and schedules from BMS from BMS.	Post- observational review of schedules and setpoint to validate potential to save.	No Annual Measurements	N/A	No Annual Measurements	Option A - Apply post-install values and appicable coniract utility rates to engineering calculations to determine Yr electricity savings one time	No Anual Monitoring	Option A - calculate savings for Year 1, and apply results to subsequent performance years

ECM *	ECM	IPMVP Option	Buildings included in install scope	ECM Intent	Baseline Conditions \& Significant Stipulated Values	Measurement Sample Size for Characteristics	Potential-o.Save INSTALL PERIOD		Performance period					
							Key Parameters Measured, Measuring Point \& Boundary for Determination of Savings	$\begin{gathered} \text { Posthnstall } \\ \text { Meassurement } \\ \text { Resposibility \& } \\ \text { Frocuency } \end{gathered}$	Annual Measured Variables, Measuring Point		Measurement Responsibility \& Frequency	Measurement Procedure	Annual Performance Monitoring Activitios	Anuual Mev Activities
6	Building Management Systen Upgrades - Night Setback	C- Natural Gas	Centennial Ave ES, WWashington-Rese ES, Ulysses Byas Es, Rosevelt MS, Roosevelt HS	Reduce heating load due to controls upgrades to optimize equipment scheduling and setpoints	Baseline Schedules Setpoints, Load, and Environment as stipulated in the savings calculations	(9) nine Natural Gas Utility Meters		Post- observational revien of schedulus and setpoint to valdate potential to save.	Gas Use at building Meters	Centennial Ave ES Washington-Rose ES, Ulysses Byas ES, Roosevelt MS Roosevelt H	Customer to provide utility data monthly for Option C sites. sites.	Option C - Complete regression analysis of building based on HDD utility savings	Observational review of validate guaranteed performance operating parameters	Option C- complete regression analysis to generate heating savings annually
6	$\begin{gathered} \text { Building } \\ \text { Management } \\ \text { System Upgrades } \\ \text { Plug Load } \\ \text { Management } \end{gathered}$	A-Electric	Centennial Ave ES, WWashignton-Rose ES, Ulysses Byas ES, Rosevelt MS, Roosevelt HS	$\begin{gathered} \text { kWh saving by } \\ \text { scheduling devices using } \\ \text { tug Aod controlers per } \\ \text { the At A Scope of Work } \end{gathered}$	Run hours, device watts	80% confidence / 20% precision / 0.5 coefficient of variation per device	Operating schedule		No Annual Measurements	N/A	No Annual Measurements	Option A - Apply post-install values and applicable contract utility rates determine Yr 1 electricity saving one time	No Anual Monitoring	Option A-calculate saving for Year 1, and apply results to subsequent performance years
6	$\begin{array}{\|c} \text { Building } \\ \text { Mynagement } \\ \text { System Upgrades - } \\ \text { DCV } \end{array}$	C- Natural Gas	Centennial Ave ES, Washington-Rose SS, Ulysses Byas ES, Roosevelt MS, Roosevelt HS	Reduce heating load due to controls upgrades to control ventilation to modulate outside air volume based on ind CO2 levels		$\underset{\text { school })}{100 \% \text { (} 1 \text { unit per }}$	OA temp, C02 (popm), \% OA damper position by	Post observationa review of trending data o validate DCV sequence of operation	Post observational review of trending data to of operations.	Washington-Rose ES, Ulysses Byas Roosevelt HS	Customer to provide utility data monthly for Option C sites.	Option C - Complete regression analysis of building based on HDD and input utility bills to generate Ga utility savings	Post observational review of trending data to validate DCV sequence of operations.	$\underset{\substack{\text { Option } \mathrm{C}-\text { complete } \\ \text { regression analysis to } \\ \text { generate heating savings } \\ \text { annually }}}{ }$
6	$\begin{aligned} & \text { Boier Plant } \\ & \text { Upgrades - Gas } \\ & \text { Supplier Switch } \end{aligned}$	C- Natural Gas	Ulysees Byas ES	$\begin{aligned} & \text { Reduced cost by } \\ & \text { switching natural gas } \\ & \text { suppliers } \end{aligned}$	N/A	100\%	N/A	Confirm switch of natural gas supplier from Gateway to National Grid	Confirm switch of natura gas supplier from Gateway to National Grid	Ulysses Byas ES	Customer to provide monthly gas bills for Option C meter	N/A	N/A	$\begin{aligned} & \text { Confirm swith of natural } \\ & \text { gas supplier from Gateway } \\ & \text { to National Grid } \end{aligned}$
7	Building Envelope Improvements	A- Electric	Centennial Ave ES, Wastingon-Rose SS, Ulysses Byas ES, Roosevelt MS, Roosevelt HS		All parameters as published in the savings calculation	$\begin{aligned} & \text { \# of units installed per } \\ & \text { scope of work } \end{aligned}$	Linear feet per unit of materials installed	$\underset{\substack{\text { One time post } \\ \text { installation verficaction } \\ \text { and photo verificaion of } \\ \text { sample se of eather } \\ \text { stripping and air sealing }}}{ }$	No Annual Measurements	N/A	No Annual Measurements	Option A - Apply post-install values and applicable contract utility rates to engineering calculations to determine Yr1 electricity savings one time.	No Anual Monitoring	$\begin{gathered} \text { Option A - calculate } \\ \text { savings for Year 1, and } \\ \text { apply results to } \\ \text { subsequent performance } \\ \text { years } \end{gathered}$
7	Building Envelope Improvements	C- Natural Gas	Centennial Ave ES, Washinton-Rose ES, Ulysses Syas ES, Roosevelt MS, Roosevelt $H S$	Savings from reducing gravity aiflow through gaps and cracks in a building's envelop using weather strpporg and sealing.	All parameters as published in the proposed energy savings calculation	(9) nine Natural Gas Utility Meters	Linear feet per unit of materials installed	One time post installation verification and photo verification of stripping and air sealing	Gas Use at building Meters	Centennial Ave ES, Washington-Rose ES, Ulysses Byas ES, Roosevelt MS Roosevelt HS	Customer to provide utility data monthly for Option C sites.	Option C - Complete regression analysis of building based on HDD and input utility bills to generate Gas utility savings	None	Option C- complete regression analysis to generate heating savings annually
8	Install Pipe Insulation	C- Natural Gas	$\begin{gathered} \text { Centinnial A.ve ES, } \\ \text { Washingoto-Rose ES, } \\ \text { Ulyssess Byas ES, Roosevelt } \\ \text { MS Roosevelt HS } \end{gathered}$	Reduce heating losses from exposed piping.	$\begin{aligned} & \text { All parameters as } \\ & \text { published int he } \\ & \text { proposed energy } \\ & \text { savings calculations } \end{aligned}$	(9) Nine Natural Gas Utility Meters	Quantity, length, and thickness of installed material	One time post instalation verificaion and photo vericitation of sample set of pipe insulation	Gas Use at building Meters	Washington-Rose ES, Ulysses Byas Roosevelt HS	Customer to provide utility data monthly for Option C sites.	Option C - Complete regression analysis of building based on HDD and input utility bills to generate Gas utility savings	None	$\begin{gathered} \text { Option C- complete } \\ \text { regression analysis } \\ \text { generate heating savings } \\ \text { annually } \end{gathered}$

Roosevelt UFSD

Exhibit D-7

ECM \#	ECM	PMVP Option	Buildings included in install scope	ECM Intent	Baseline Conditions\& SignificantStipulated Values	Measurement Sample Size for Groups w/ Similar Characteristics	Potential-o-Save INSTALL PERIOD		Performance period					
							Key Parameters Measured, Measuring Point \& Boundary for Determination of Savings		Annual Measured Variables, Measuring Point		Measurement Responsibility \& Freauency	Measurement Procedure	Annual Performance Monitoring Activites	Annual Mev Activities
9	$\begin{aligned} & \text { Walk-in } \\ & \text { Freezer/Cooler } \\ & \text { Controllers } \end{aligned}$	A-Electric	Centennial Ave ES, Washington-Rose ES, Ulysses Byas ES, Roosevelt MS, Roosevelt HS	Reduce compressor electric consumption by controlling temperatures of coolers and freezers and installation of high efficiency EC motors in evaporators per Att A scope of work	All parameters as published in the savings calculation	$\begin{gathered} \text { (1) cooler for each } \\ \text { school and (1) freezer } \\ \text { for each school } \end{gathered}$	Customer to incorporate Remote Site Manager and service contract with vendor to monitor key parameters (temps, status, amps); otherwise contractually proposed savings will be stipulated All LAN drops required for connection to the All LAN drops required for connection to the monitoring system / controllers are the responsibility of the customer.	Confirm total number of devices installed agains equipment wist of work.	One-time Post-install report generated by customer	NA	No Anual Measurements		No Anual Monitoring	$\begin{aligned} & \text { Option A- calculate } \\ & \text { savings for Year r } 1 \text {, and } \\ & \text { supply result so } \\ & \text { subsequent performance } \\ & \text { years } \end{aligned}$
10	Install Solar PV Systems	A- Electric	Centennial Ave ES, Washington-Rose ES Roosevelt HS	Generation of electricity by photovoltaic array		Production Meter and Solar Insolation metering persene per site (1) set		Short term (approx 2 weeks) measurements via DAS to verify potential to perform based on (sorat out/ solar in in efficiency compare to design calcullations.		None		Option A Production Expected (kWh) = Irradiance Measured / Irradiance Modeled) x Production Modeled Adjustment Value (kWh) = Production Modeled - Production Expected Production Adjusted $(\mathrm{kWh})=$ Production Measured + Adjustment Value	Yr1 Monitoring only	

Energy Conservation Measures by Facility by M\&V Option Type

ECM \#	ECM Description	Roosevelt High School	Roosevelt Middle School	Ulysses Byas ES	Washington-Rose ES	Centennial Ave ES
1	Lighting Upgrades	A/C	A/C	A/C	A/C	A/C
1	Lighting Upgrades - Occupancy Sensors	A/	A/	A/	A/	A/
2	Boiler Plant Upgrades	/C	/C	/C	/C	/C
2	Gas Supplier Switch		/C		/C	
2	Gas Bill tax error	/				
3	DHW Heating Upgrades	/C			/C	
4	Motors \& VFDs					/C
4	Chiller Compressor Replacements		A/			
4	RTU Compressor Replacements			A/=		
4	AC Unit Replacements		A/_			A/_
4	CHW Pump Replacements					A/
5	De-Stratification Fans	A/C	A/C	A/C	A/C	A/C
6	BMS Upgrades - Setback Schedules / SPs	A/C	A/C	A/C	A/C	A/C
6	BMS Upgrades - Plug Load Mngmnt	A/	A/	A/	A/	A/
6	BMS Upgrades - DCV	A/C	A/C	A/C	A/C	A/C
6	Gas Supplier Switch			/C		
7	Building Envelope	A/C	A/C	A/C	A/C	A/C
8	Pipe Insulation	/C	/C	/C	/C	/C
9	Walk-in Freezer Controllers	A/_	A/_	A/_	A/_	A/_
10	Solar PV Systems	A/	A/	A/	A/	A/

Note: The M\&V options are distributed by utility type as Electric / Natural Gas
An underscore indicates where an option is not applicable. A single letter represents the option type, for example, " A " is Option A.

Honeywell

*Aid ratio without public vote

"- Bases on semi-annual payments beginning after a 18 month installation period

- Based on current State-wide average interest rate of 2.125%

[^0]: For locations where boilers are not being replaced, the existing boiler efficiency is equal to the proposed boile efficienc

